首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four tridentate thiosemicarbazone salicylaldiminato‐palladium(II) complexes of the general formula [Pd(saltsc‐R)PPh3] [saltsc=salicylaldehyde thiosemicarbazone; R=H ( 1 ), 3‐tert‐butyl ( 2 ), 3‐methoxy ( 3 ), 5‐chloro ( 4 )], have been evaluated as catalyst precursors for the Mizoroki–Heck coupling reaction between a variety of electron‐rich and electron‐poor aryl halides and olefins. The palladium complexes (0.1–1 mol% loading) were found to effectively catalyze these reactions with high yields being obtained when aryl iodides and aryl bromides were utilized. The effects of base, catalyst loading, reaction temperature and reaction time on the catalytic activity of the most active complex were also investigated.  相似文献   

2.
Ligand‐free palladium can be recovered almost quantitatively from Heck reaction mixtures by filtration after its deposition on a carrier such as silica or celite. Subsequently, it is re‐activated to its original activity by adding a small amount of iodine or bromine prior to the next reaction cycle. The catalyst results in excellent yields and selectivities, even for the less reactive aryl bromides. A catalytic cycle based on anionic palladium intermediates is proposed.  相似文献   

3.
The palladium‐based dichlorobis[1‐(dicyclohexylphosphanyl)piperidine] complex – [(P{(NC5H10)(C6H11)2})2Pd(Cl)2] is readily prepared in quantitative yield from the reaction of [Pd(cod)(Cl)2] (cod=cycloocta‐1,5‐diene) with two equivalents of 1‐(dicyclohexylphosphanyl)piperidine in toluene under N2 within only a few minutes at room temperature. This complex is a highly active Heck catalyst with excellent functional group tolerance, which reliably operates at low catalyst loadings. Various activated, non‐activated, deactivated, functionalized, sterically hindered, and heterocyclic aryl bromides, which may contain nitro, chloro or trifluoromethane groups, nitriles, acetales, ketones, aldehydes, ethers, esters, lactones, amides, anilines, phenols, alcohols, carboxylic acids, and heterocyclic aryl bromides, such as pyridines and derivatives, as well as thiophenes and aryl bromides containing methylsulfanyl groups have been successfully coupled with various (also functionalized) alkenes in excellent yields and selectivities (the E‐isomers are typically exclusively formed) at 140 °C in the presence of 0.05 mol % of the catalyst in DMF. Even though lower catalyst loadings could be used for many electronically activated, non‐activated and some electronically deactivated aryl bromides without noticeable loss of activity, the great advantage of the reaction protocol presented here lies in its reliability and general applicability, which allows its direct adoption to other aryl bromides without the neccessity of its modification. Experimental observations indicated that palladium nanoparticles are the catalytically active form. Consequently, whereas comparable levels of activity were observed for dichloro‐bis(aminophosphine) complexes of palladium, a dramatic drop in activity was found for their phosphine‐based analogue [(P(C6H11)3)2Pd(Cl)2].  相似文献   

4.
An immobilization of palladium in organic‐inorganic hybrid materials‐catalyzed Sonogashira coupling reaction has been described. Terminal alkynes reacted with aryl iodides and aryl bromides only in the presence of a 3‐(2‐aminoethylamino)propyl‐functionalized, silica gel‐immobilized palladium catalyst under amine‐, copper‐ and phosphine‐free reaction conditions. The reaction generates the corresponding cross‐coupling products in excellent yields. Furthermore, the silica‐supported palladium can be recovered and recycled by a simple filtration of the reaction solution and used for 30 consecutive trials without any decreases in activity.  相似文献   

5.
通过较简单的方法合成了羧甲基纤维素钠负载钯(0)配合物,用XPS、TG、DTA等手段对其进行了表征。该配合物在空气氛围中、较低温度下能很好地催化丙烯酸、苯乙烯与芳基碘的Heck反应,立体选择性地生成取代的反式肉桂酸、1,2-二苯乙烯。羧甲基纤维素钠负载钯(0)配合物能够较方便地从反应体系中分离出来,具有较好的重复使用性能。  相似文献   

6.
Suzuki偶联反应是在零价钯配合物催化剂的催化下,芳基硼酸与卤代芳烃进行的交叉偶联反应,可以高效、高选择性地构建C-C键.钯配合物催化剂对Suzuki偶联反应的活性和选择性起着决定性的影响,是研究Suzuki偶联反应的关键.对含有膦配体、N-卡宾配体、亚胺配体、胺配体和其它配体的钯配合物催化剂催化效果进行了综述.  相似文献   

7.
This communication reports on the β‐diketiminatophosphane palladium‐catalyzed copper‐free Sonogashira coupling of aryl chlorides with alkynes. A catalyst loading of 0.5 mol% is sufficient to achieve high performance under relatively mild reaction conditions. Furthermore, dialkynylbenzenes are efficiently prepared by one‐pot double Sonogashira couplings of aryl dichlorides.  相似文献   

8.
Stabilization of palladium species against agglomeration is essential for reasonable catalytic activity in C C coupling reactions. In contrast to common methods of palladium(0) complex or particle stabilization, a new concept is introduced here: it is demonstrated that a controlled release of palladium from an inactive precatalyst provides stability, too, and leads to high catalytic activity. This paper presents surprising catalytic results for Heck and Suzuki reactions with aryl chlorides and bromides, using three highly stable macrocyclic palladium complexes as catalyst precursors. Three different behaviour patterns for the macrocyclic complexes can be deduced from the evaluation of catalytic activities, UV‐Vis spectroscopy, recycling studies of immobilized complexes, and ligand addition experiments. (i) Palladium tetraphenylporphyrin reversibly releases only extremely low amounts of palladium during the reactions, and low coupling activities are observed. (ii) Release of palladium from its phthalocyanine complex is irreversible; cumulative release of palladium into the reaction mixtures leads to high catalytic activity. (iii) Extraordinary results were obtained with a Robson‐type complex of palladium, which reversibly releases effectual amounts of palladium into solution under reaction conditions. This controlled release prevents the formation of inactive palladium agglomerates under harsh conditions and leads to high catalytic performances. Even strongly deactivated electron‐rich aryl chlorides (4‐chloroanisole) can be completely and selectively converted by the in situ formed anionic palladium halide complexes; the addition of typical stabilizing additives (TBAB) was found to be unnecessary. The bimetallic palladium complex is regenerated at the end of the reaction. These results contribute to the current understanding of the active species in C C coupling reactions of Heck and Suzuki types.  相似文献   

9.
An aerobic, ligand‐free Suzuki coupling reaction catalyzed by in situ generated palladium nanoparticles in polyethylene glycol with an average molecular weight of 400 Da (PEG‐400) at room temperature has been developed. This catalytic system is a very simple and highly active protocol for the Suzuki coupling of aryl chlorides with arylboronic acids, which proceed smoothly in excellent yields in short times using low catalyst loadings. Control experiments demonstrated that the Suzuki reaction catalyzed by the in situ generated palladium nanoparticles can be carried out much quicker than that using the preprepared particles under the same conditions. The formation of palladium nanoparticles in PEG‐400 was promoted by arylboronic acids.  相似文献   

10.
Today there is a need for inexpensive and reliable catalysts due to the increasing demand for ??green?? catalytic processes of high conversion and selectivity. We now report on the performance of palladium nanoparticles supported on various carbon allotropes in the model reaction of cyclohexene hydrogenation. Palladium catalysts supported on pristine and oxidatively functionalized multiwalled carbon nanotubes and activated carbon were synthesized and characterized by transmission electron microscopy, X-ray diffraction, temperature programmed desorption and nitrogen adsorption measurements. Catalyst based on multiwalled carbon nanotube proved to be more active and less prone to deactivation than the activated carbon supported one. This finding could be interpreted on the basis of morphological differences between the supports.  相似文献   

11.
The Buchwald–Hartwig amination of aryl halides with secondary amines and functionalized aromatic amines catalyzed by solid‐supported palladium is reported. The choices of ligand, base and solvent are crucial for the successful coupling. The amination of aromatic iodides, bromides and chlorides can be easily achieved with palladium on charcoal in the presence of a biphenylphosphane‐type ligand at 80–110 °C. In addition, the palladium on charcoal catalyst is easily separable after the reaction, and reusable several times with only small activity loss.  相似文献   

12.
The well‐defined diphenylvinylphosphine‐palladium complex 1 and the diphenylcyclopropylphosphine‐palladium complex 2 were successfully synthesized. The crystal structures of these complexes were obtained by X‐ray crystallographic analysis. Both complexes were air‐ and moisture‐stable, and could be prepared on a gram scale. These palladium complexes catalyzed the Suzuki–Miyaura reaction of aryl bromides [turnover numbers (TON) up to 196,000] and aryl chlorides (TON up to 50,000). Furthermore, complex 2 catalyzed the Buchwald–Hartwig amination of aryl chlorides and aromatic/aliphatic amines with a low catalyst loading. These complexes showed different reactivities for the coupling of 2‐chloropyridine, and the origin of this difference is discussed.  相似文献   

13.
Various mono‐ and polymetallic palladium complexes containing a 2‐pyridyl‐1,2,3‐triazole (pyta) ligand or a nonabranch‐derived (nonapyta) ligand have been synthesized by reaction of palladium acetate with these ligands according to a 1:1 metal‐ligand stoichiometry and used as catalysts for carbon‐carbon cross‐coupling including the Suzuki–Miyaura, Sonogashira and Heck reactions. The unsubstituted monopalladium and nonapalladium complexes were insoluble in all the reaction media, whereas tri‐ and tetranuclar palladium complexes were soluble, which allowed conducting catalysis under either homogeneous or heterogeneous conditions. The organopalladium complexes were characterized by standard analytical and spectroscopic methods and by thermogravimetry showing decomposition above 110 °C. Both types of catalysts showed excellent activity for these cross carbon‐carbon bond formations involving aryl halides including activated aryl chlorides or acyl chloride. Besides the comparison between homogeneous and heterogeneous catalysis, the key feature of these catalysts is their remarkable robustness that allowed recycling at least ten times in the example of the Heck reaction with excellent yields and without significant reduction of the conversion.  相似文献   

14.
A new series of diarylvinylphosphine ligands was designed and synthesized. A catalyst system, consisting of the ligands and palladium species, effectively catalyzed the coupling reaction of aryl bromides and chlorides with amines to afford the corresponding products in good to excellent yields. The efficiency is likely derived from an interaction between the palladium center and the cis‐aryl moiety on the diarylvinylphosphine ligand stabilizing a catalytic intermediate during the coupling reaction.  相似文献   

15.
The reaction pathways for the synthesis of vinyl acetate monomer (VAM) are explored on model palladium and gold–palladium alloy single crystal catalysts by combining experiments carried out in ultrahigh vacuum together with density functional theory calculations and Monte Carlo simulations. Previous work by Goodman has shown that both pure palladium and gold–palladium alloys catalyze VAM formation at high pressures, thereby paving the way for fundamental studies of the pathways for this reaction. The coverages of the reactants and products on the surface were found to play an important role in controlling both the reaction pathways and the selectivity. The high coverages on the catalyst under reaction conditions favor bond-forming reactions while inhibiting bond-breaking reactions. On Pd(111), the reaction is initiated by the coupling of ethylene and surface acetate species to form an acetoxyethyl-palladium intermediate, a bond-forming reaction. The high coverages also act to control the selectivity since VAM is stabilized on the crowded surface. The gold in model Au/Pd(111) and Au/Pd(100) alloys gold preferentially segregates to the surface. In the case of Au/Pd(111) alloys, there is a slightly repulsive interaction between the gold and palladium atoms, resulting in a larger proportion of isolated palladium sites than would be expected if they were randomly distributed, while the longer-range interactions on Au/Pd(100) lead to the formation of ordered surface structures and the existence of isolated palladium sites for gold coverages greater than 0.5 ML. Higher coverages of Au on the Au/Pd(111) and Au/Pd(100) alloys decrease the population of bridging Pd sites and thus increase Pd site isolation. This eliminates the larger Pd ensembles that that lead to the decomposition of VAM and ethylene thus increasing the reaction selectivity and weakens the adsorption of ethylene and acetate which enhances the rate of reaction. Higher coverages of Au, however, also suppress the activation of O2 which decrease the rate of acid deprotonation thus resulting in optimal Au/Pd compositions.  相似文献   

16.
A stable heterogeneous catalyst precursor, sulfur‐modified gold‐supported palladium material (SAPd), has proved to be an excellent source of leached, ligand‐free, Pd for the amination of aryl bromides and chlorides. The reaction‐enabling catalyst is provided in situ as leached Pd in low catalyst loading (0.21±0.02 mol%). This allows the precatalyst (SAPd) to be filtered off and used for a minimum of ten reaction cycles without loss of catalytic activity. SAPd released only trace amounts, less than 0.6 ppm, of highly active Pd during the reaction without any aggregation.  相似文献   

17.
Suzuki–Miyaura biaryl and diarylmethane syntheses via the coupling of arylboronic acids with aryl and arylmethyl bromides are performed in water by means of two new CNC‐type palladium pincer complexes. Good to excellent results (including high TON values and extended recycling procedures) are obtained in most cases for a range of electronically dissimilar halides and boronic acids. On the basis of a series of kinetics studies, transmission electron microscopy (TEM), mercury drop tests, and quantitative poisoning experiments, the real role of the latter palladacycles, closely linked to the formation and active participation of palladium nanoparticles, is discussed.  相似文献   

18.
Polymer supported palladium nanoparticle catalyst was synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. This catalyst exhibits good activity and stability in Suzuki cross-coupling reaction of arylboronic acid with aryl halides and oxidation reaction of alcohols to corresponding aldehydes or ketones without over oxidation. After reaction, the catalyst can be separated by simple method and used many times in repeating cycles without considerable loss in its activity.  相似文献   

19.
Ultrafine palladium particles can be deposited on mesoporous cerium oxide by a deposition–precipitation method. After reduction with hydrogen at 300 °C, palladium on the mesoporous compound is cationic with a valence close to +1 whereas the particles have a metallic structure. The catalytic activity in selective methanol decomposition to hydrogen and carbon monoxide at 180 °C is significantly higher than that of palladium supported on non-porous cerium oxide, suggesting that the mesoporous structure is advantageous to the reaction. When the palladium content is high, part of mesopores are probably choked with large palladium particles, which will cause saturation of the activity.  相似文献   

20.
An efficient palladium nanoparticles-catalyzed N-arylation of sulfonamides and sulfonyl azides is described. This procedure serves as an active protocol for intermolecular C–N bond formation using Pd(OAc)2 in PEG-400 under air. Aryl bromides and triflates react at 35°C, while aryl chlorides require heating to 50°C and give the desired products only in low yields. This reaction proceeds smoothly in acceptable yields using low catalyst loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号