首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen incorporation at the interface between the silicon substrate and chemical vapour deposited (CVD) diamond films nucleated by the bias-enhanced nucleation (BEN) procedure has been studied by heavy-ion elastic recoil detection (ERD). Using standard process conditions for the realisation of heteroepitaxial films, oxygen with a concentration equivalent to about 1 nm SiO2 has been found, which was mainly incorporated during textured growth with a certain CO2 admixture to the process gas. By completely omitting CO2 during nucleation and growth, the oxygen at the interface can be reduced by nearly one order of magnitude to 6.3×1015 at cm−2, corresponding to 0.14 nm SiO2. Intentional addition of highly enriched C18O2 to the gas phase shows that the oxygen incorporation is strongly enhanced during BEN with hydrocarbon in the gas phase. The results indicate that roughening of the surface, the deposition of SixOyCz phases and strong lateral inhomogeneities at the silicon interface may explain the coexistence of epitaxial crystallites and amorphous phases. It is suggested that a further reduction of the oxygen concentration at the interface may have consequences for an improved heteroepitaxy of diamond on silicon.  相似文献   

2.
The nucleation effect of CVD diamond by ion bombardment was studied by a two-step process. In the first step, hydrocarbon and hydrogen ion bombardment was used to induce nucleation on mirror-polished (001) Si substrates. In the second step, diamond films were subsequently deposited on the ion-bombarded substrates by a conventional hot filament chemical vapor deposition. It was found that after the ion bombardment, an amorphous layer embedded with nano-crystalline diamond particles formed on the Si substrate. These nano-crystalline diamond particles were proposed to serve as the nucleation centers for the growth in the second step. The nucleation density depended strongly on the ion dosage and a nucleation density of up to 2×109 cm−2 could be achieved under optimized conditions.  相似文献   

3.
Uniform distribution of bias-enhanced nucleation of diamond has been improved on Si substrate of an area of 1 × 1 cm2 by using a dome-shaped Mo counter electrode in a microwave plasma chemical vapor deposition reactor. A nucleation density of 109 cm2 can be reached within a few minutes when the bias voltage of − 100 V is applied on the substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that a single-crystalline diamond in a few nanometered size can be deposited on a volcano-shaped cubic SiC which is epitaxially formed on a Si cone. Examination reveals a large fraction of diamond nuclei are oriented along with one side of SiC on each Si cone. The Si cone formed on the Si substrate is due to plasma etching. The diamond nuclei have a shape close to rhombus in TEM. With further growth, secondary nucleation of diamond occurs on top of diamond nuclei and SiC which grows with Si cones. As a result, polycrystalline diamonds are deposited on each Si cone.  相似文献   

4.
Thin films of polycarbosilane (PCS) were coated on a Si (100) wafer and converted to silicon carbide (SiC) by pyrolyzing them between 800 and 1150 °C. Granular SiC films were derived between 900 and 1100 °C whereas smooth SiC films were developed at 800 and 1150 °C. Enhancement of diamond nucleation was exhibited on the Si (100) wafer with the smooth SiC layer generated at 1150 °C, and a nucleation density of 2 × 1011 cm 2 was obtained. Nucleation density reduced to 3 × 1010 cm 2 when a bias voltage of − 100 V was applied on the SiC-coated Si substrate. A uniform diamond film with random orientations was deposited to the PCS-derived SiC layer. Selective growth of diamond film on top of the SiC buffer layer was demonstrated.  相似文献   

5.
Different Cr- and Ti-base films were deposited using PVD-arc deposition onto WC-Co substrates, and multilayered coatings were obtained from the superimposition of diamond coatings, deposited on the PVD interlayer using hot filament chemical vapour deposition (HFCVD). The behaviour of PVD-arc deposited CrN and CrC interlayers between diamond and WC-Co substrates was studied and compared to TiN, TiC, and Ti(C,N) interlayers. Tribological tests with alternative sliding motion were carried out to check the multilayer (PVD + diamond) film adhesion on WC-Co substrate. Multilayer films obtained using PVD arc, characterised by large surface droplets, demonstrated good wear resistance, while diamond deposited on smooth PVD TiN films was not adherent. Multilayered Ti(C,N) + diamond film samples generally showed poor wear resistance.Diamond adhesion on Cr-based PVD coatings deposited on WC-Co substrate was good. In particular, CrN interlayers improved diamond film properties and 6 μm-thick diamond films deposited on CrN showed excellent wear behaviour characterised by the absence of measurable wear volume after sling tests. Good diamond adhesion on Cr-based PVD films has been attributed to chromium carbide formation on PVD film surfaces during the CVD process.  相似文献   

6.
Large-scale heteroepitaxial growth of diamond depends critically on the development of a suitable lattice-matched substrate system. Oxide substrates, notably MgO and SrTiO3, on which thin epitaxial films of iridium serve as a nucleation layer for diamond have already shown considerable promise. We describe here improvements in the growth of single crystal diamond by low-pressure microwave plasma-enhanced CVD. Oxide substrates with flat, low-index surfaces form the initial basis for the process. Iridium was deposited on heated substrates in a UHV electron-beam evaporation system resulting in epitaxial films, typically 150–300 nm thick, with Ir (1 0 0) parallel to the surface of all substrates as confirmed by X-ray and electron backscattering diffraction. Following Ir deposition, the samples were transferred to a CVD reactor where a bias-enhanced nucleation step induced a dense condensate that completely covered the Ir surface. Uniform nucleation densities of order 1012 cm−2 were observed. Interrupted growth studies, carried out at intervals from seconds to minutes subsequent to terminating the nucleation step, revealed a rapid coalescence of grains. One hour of growth resulted in a smooth, nearly featureless, (0 0 1) diamond film. For extended growth runs, slabs of diamond were grown with thickness as great as 38 μm and lateral dimensions near 4 mm. The crystals were transparent in visible light and cleaved on (1 1 1) planes along 〈1 1 0〉 directions, similar to natural diamond. Of particular significance is the successful use of sapphire as an underlying substrate. Its high crystalline perfection results in epitaxial Ir films with X-ray linewidths comparable to those grown on SrTiO3. However, Al2O3 possesses superior interfacial stability at high temperatures in vacuum or in a hydrogen plasma with a better thermal expansivity match to diamond. Since sapphire is available as relatively inexpensive large diameter substrates, these results suggest that wafer-scale growth of heteroepitaxial diamond should be feasible in the near future.  相似文献   

7.
The early stages of diamond nucleation on Si(1 1 1) thinned areas have been studied by several TEM techniques. Both top-view and cross-section investigations have been carried out to better characterise the nature of the diamond precursor as well as the diamond/silicon interface. Two different routes for diamond nucleation have been underlined using the same CVD experimental conditions. One involves the formation of a β-SiC interlayer while the second is a direct nucleation on silicon. Moreover, the size of the smallest detectable diamond particles is a few nanometers according to nanodiffraction experiments.  相似文献   

8.
Diamond film deposition onto WC-Co substrates exhibits several limitations regarding the final diamond quality in the film and its adhesion due to the chemical interaction between the Co in the substrate and the diamond CVD environment. In the present study, the use of a ~ 1.5 μm thermally nitrided Cr interlayer was examined as an effective diffusion barrier throughout the CVD process. Nitridation of the Cr PVD layer in NH3 environment resulted in the formation of a graded CrN/Cr2N layer comprised mainly of the CrN phase, accompanied with the formation of a porous ‘net-like’ microstructure at the surface. During both thermal nitridation and exposure to the CVD environment up to 360 min, the diffusion of C and Co from the substrate into the interlayer was limited to the region adjacent to the Cr–N interlayer/WC–Co substrate interface, which contained the Cr2N phase. In this region, the Co interacted with the Cr lattice to form a CoCr phase, which was suggested to enhance the chemical binding between the interlayer and the substrate. The region containing the CrN phase was suggested to act as an effective diffusion barrier due to its fully occupied interstitial sites and relatively high crystalline density compared to the underlying Cr2N phase. It was evident that the deleterious effects of Co during the CVD process were successfully suppressed using the Cr–N interlayer and the deposited diamond film exhibited improved adhesion and higher diamond quality.The formation of phases within the interlayer during nitridation and the diamond CVD process, and diamond quality evaluation in the deposited films were investigated by complementary techniques: SEM, XRD, XPS, SIMS and Raman spectroscopy.  相似文献   

9.
Diamond film on titanium substrate has become extremely attractive because of the combined properties of these two unique materials. Diamond film can effectively improve the properties of Ti for applications as aerospace and biomedical materials, as well as electrodes. This study focuses on the effects of process parameters, including gas composition, substrate temperature, gas flow rate and reactor pressure on diamond growth on Ti substrates using the hot-filament chemical vapor deposition (HFCVD) method. The nucleation density, nuclei size as well as the diamond purity and growth tendency indices were used to quantify these effects. The crystal morphology of the material was examined with scanning electron microscopy (SEM). Micro-Raman spectroscopy provided information on the quality of the diamond films. The growth tendency of TiC and diamond film was determined by X-ray diffraction analysis. The optimal conditions were found to be: CH4:H2 = 1%, gas flow rate = 300 sccm, substrate temperature Tsub = 750 °C, reaction pressure = 40 mbar. Under these conditions, high-quality diamond film was deposited on Ti with a growth rate of 0.4 μm/h and sp2 carbon impurity content of 1.6%.  相似文献   

10.
Hot filament chemical vapour deposition (HF CVD) process with low filament temperature (∼ 1650 °C) was utilized for the diamond coating of TiC samples. Porous substrates were fabricated by pulse discharge sintering (PDS) to create more nucleation sites. Nucleation density and morphology of deposited diamond films were studied using scanning electron microscopy (SEM). It was found that the highest growth rate occurs at substrate temperature of 980 °C. Evaluation of the residual stress in deposited films was carried out by Raman spectroscopy. Ball on disk tests were performed with steel as a counterface material. After polishing diamond films demonstrated good sliding performance: friction coefficient of 0.08 and wear rate of 10 17 m3/N m.  相似文献   

11.
The influence of traces of oxygen in the process gas on the bias-enhanced nucleation (BEN) of diamond on silicon has been studied in the present work. CO2 in concentrations ranging from 0 to 3000 ppm was added during the nucleation procedure at Ubias=−200 V in microwave plasma chemical vapour deposition (MPCVD). A significant influence of CO2 could already be detected for a concentration of 75 ppm, corresponding to a C:O ratio of 600:1. It resulted in a continuous reduction of the biasing current and a delay in the nucleation process accompanied by a decrease of the final diamond-covered substrate surface area with increasing CO2 concentration. At 3000 ppm, the nucleation was completely suppressed. An etching of diamond nuclei by the oxygen could be excluded from in-situ growth rate measurements under bias. Instead, optical emission spectra of the Hβ Balmer line indicated a decrease in electrical field strength in the plasma above the substrate. For all gas compositions allowing diamond nucleation, epitaxially aligned films could be obtained, provided that the duration of the biasing step was chosen appropriately. Thus, traces of oxygen do not completely suppress epitaxy. However, the in-plane orientation of the films as determined by X-ray diffraction measurements deteriorates with increasing oxygen concentration.  相似文献   

12.
It is generally accepted that SiC layers are often involved in the adhesion efficiency of chemical vapour deposition (CVD) diamond films on Si-containing substrates. Si3N4–SiC composite substrates with different amounts of SiC particles (0–50 wt%) were then used for diamond deposition. Samples were produced by pressureless sintering (1750°C, N2 atmosphere, 2–4 h). The diamond films were grown on a commercial MPCVD reactor using H2/CH4 mixtures. Despite there being no special substrate pre-treatment, the films were densely nucleated when SiC was added (Nd≈1×1010 cm−2) with primary nanosized (∼100 nm) particles, followed by a less dense (Nd≈1×106 cm−2) secondary nucleation. Indentation experiments with a Brale tip of up to 588 N applied load corroborated the benefit of SiC inclusion for a strong adhesion. The low thermal expansion coefficient mismatch between Si3N4 and diamond resulted in very low compressive stresses in the film, as proved by micro-Raman spectroscopy.  相似文献   

13.
The morphology, composition, and bonding character (carbon hybridization state) of continuous, ultra-thin (thickness ∼ 60 nm) nanocrystalline diamond (NCD) membranes are reported. NCD films were deposited on a silicon substrate that was pretreated using an optimized, two-step seeding process. The surface after each of the two steps, the as-grown NCD topside and the NCD underside (revealed by etching away the silicon substrate) is examined by X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) combined with X-ray absorption near edge structure (XANES) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The first step in the seeding process, a short exposure to a hydrocarbon plasma, induces the formation of SiC at the diamond/Si interface along with a thin, uniform layer of hydrogenated, amorphous carbon on top. This amorphous carbon layer allows for a uniform, dense layer of nanodiamond seed particles to be spread over the substrate in the second step. This facilitates the growth of a homogeneous, continuous, smooth, and highly sp3-bonded NCD film. We show for the first time that the underside of this film possesses atomic-scale smoothness (RMS roughness: 0.3 nm) and > 98% diamond content, demonstrating the effectiveness of the two-step seeding method for diamond film nucleation.  相似文献   

14.
15.
Diamond films with highly smooth backside surface have been deposited by positively biasing the substrate during diamond growth in a hot-filament chemical vapor deposition (HFCVD) system. By bonding the diamond film on the glass and wet etching to remove silicon, the highly smooth diamond surface can be exposed and used directly for the fabrication of diamond devices.Silicon substrate was first treated by diamond powder of 625 nm in an ultrasonic bath. By positively biasing the substrate, electron bombardment during diamond growth increases the nucleation density from 108 ∼ 109 cm 2 to 4 × 1011 cm 2. The surface smoothness on the backside of diamond film has thus been improved significantly, inducing root-mean-square roughness of 5 nm. Owing to the extremely high surface smoothness and the high crystalline quality on the backside of diamond film and the high diamond growth rate, the backside surface of the diamond film grown under electron bombardment is particularly suitable for device fabrication.  相似文献   

16.
In this work, two approaches were developed to extend the coating area of diamond by continuous deposition in a plasma-assisted chemical vapor deposition (CVD) method above the liquid. The techniques were based on the methods previously developed by our research group and the characteristic was to use dc (direct current) plasma generated between the liquid surface and the metal electrode. In the first approach, a tungsten rod was rotated in a chamber at reduced pressure so that a diamond film was formed as a ‘belt’ in 6 mm width around the side of the rod. The deposited diamond was polycrystalline with a grain size of 1–3 μm. The film thickness increased almost linearly with deposition time, whereas the grain size was almost constant against the deposition time. The second approach was for a plate substrate. A tungsten plate was hung with an iron wire and the plasma was horizontally generated between the liquid and plate surfaces. When the W plate was vertically slid down slowly, a diamond film was continuously deposited on the surface. The deposited film was covered with a soot-like carbon layer on the top and the post-treatment with H2O/N2 gas at 600 °C was effective in removing it. The continuous deposition successfully demonstrated the expansion of the deposition area with the novel plasma CVD method above the liquid.  相似文献   

17.
Some novel aspects of nanocrystalline diamond (NCD) film nucleation and growth by DC-PACVD were investigated, which focused on the effect of methane injection timing at ramp stage (see discussion in the text) and cathode temperature as well. NCD films were deposited for 4 h on a 4 in. Si wafer which was ultrasonically seeded in a methanol slurry of diamond powder with a 5 nm average diameter. The H2/CH4/N2 gas mixture with a composition of 96.7%/3%/0.3% was used as precursor gas. The total gas flow rate and chamber pressure were 150 sccm and 150 Torr, respectively. Discharge voltage and current of 500 V and 45 A were used respectively at a substrate temperature of 800 °C. The nucleation density, microstructure, growth rate and crystallinity of the obtained NCD films were characterized by SEM, XRD, NEXAFS and Raman spectroscopy. The nucleation density was found to be sensitive to methane injection timing in the ramp stage. In addition, the cathode temperature greatly affected the nucleation density, grain size and growth rate.  相似文献   

18.
Silicon has been the most widely studied substrate for the nucleation and growth of CVD diamond films. However, other substrates are of interest, and in this paper, we present the results of a study of the biased nucleation and growth of diamond films on bulk single and polycrystalline tungsten. Diamond films were nucleated and grown, using a range of bias and reactor conditions, and characterized by Raman spectroscopy and scanning electron microscopy (SEM). High-quality (100) textured films (Raman FWHM<4 cm−1) could be grown on both single and polycrystalline forms of the tungsten substrate. On carefully prepared substrates, by varying the bias treatment, it was possible to determine the nucleation density over a 4–5 order range, up to ∼109 cm−2. Raman measurements indicated that the diamond films grown on bulk tungsten exhibited considerable thermal stress (∼1.1 GPa), which, together with a thin carbide layer, resulted in film delamination on cooling. The results of the study show that nucleation and growth conditions can be used to control the grain size, nucleation density, morphology and quality of CVD diamond films grown on tungsten.  相似文献   

19.
Initial growth of heteroepitaxial diamond on Ir (0 0 1)/MgO (0 0 1) was investigated by scanning electron microscopy, reflection high-energy electron diffraction (RHEED) and atomic force microscopy. Bias-enhanced nucleation (BEN) was performed by antenna-edge-type microwave plasma assisted chemical vapor deposition. In BEN, diamond crystallites nucleated and grew along the [−1 1 0] and [1 1 0] directions of iridium. Diamond was likely to nucleate on protruded iridium areas. After BEN, in addition to the diamond diffraction spots, iridium bulk diffraction spots, which were not observed before BEN, were observed by RHEED. The iridium surface appeared to be protruded and changed by the high ion current density in BEN. Under [0 0 1] selective growth conditions, diamond crystallites, which were less than 10 nm in diameter, were etched by H2 plasma. Diamond nucleated areas corresponded to the surface ridges of iridium along the [−1 1 0] and [1 1 0] directions at 10–40 nm intervals before BEN.  相似文献   

20.
In order to explain the bias-enhanced nucleation (BEN) of diamond at pressures of approximately 6 kPa, the flux and energy of hydrogen ions to a negatively biased substrate in microwave plasma chemical vapor deposition (MWP-CVD) were investigated. Ion flux increased rapidly upon increasing the negative bias voltage to greater than 150 V when the pressure was higher than 3 kPa. This phenomenon was attributed to the additional ionization in the vicinity of the substrate due to biasing. Optical emission spectroscopy at 6 kPa clarified that the emission intensity of the Swan band of C2 radicals was reduced, and intramolecular temperatures were enhanced in this bias region. A numerical simulation on the basis of the measured ion flux and density revealed that the most frequent energy was less than 2 eV under the conditions of 200 V and 6 kPa, and that the average number of collisions in the plasma sheath reached 60. We propose, on the basis of these results, that the substrate biasing in BEN at pressures above 3 kPa causes the additional ionization and activation of neutral species in the sheath, while the direct momentum transfer of ions to the substrate is strongly suppressed in BEN in this pressure range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号