首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low-energy ion bombardment of silicon on diamond nucleation was investigated. By bombarding 100 eV ions of methane and hydrogen on a silicon substrate prior to diamond growth by chemical vapor deposition, diamond nucleation can be immensely enhanced. The ion beam treatment deposited a layer of nano-crystalline graphitic carbon embedded with amorphous SiC. Diamond then nucleated on the graphite overlayer; the nucleation density increased with increasing ion dose. At 1×1019 ions cm−2, a nuclei density of 4×108 cm−2 was obtained. These results show that ion bombardment of the substrate enhances diamond nucleation.  相似文献   

2.
Uniform distribution of bias-enhanced nucleation of diamond has been improved on Si substrate of an area of 1 × 1 cm2 by using a dome-shaped Mo counter electrode in a microwave plasma chemical vapor deposition reactor. A nucleation density of 109 cm2 can be reached within a few minutes when the bias voltage of − 100 V is applied on the substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that a single-crystalline diamond in a few nanometered size can be deposited on a volcano-shaped cubic SiC which is epitaxially formed on a Si cone. Examination reveals a large fraction of diamond nuclei are oriented along with one side of SiC on each Si cone. The Si cone formed on the Si substrate is due to plasma etching. The diamond nuclei have a shape close to rhombus in TEM. With further growth, secondary nucleation of diamond occurs on top of diamond nuclei and SiC which grows with Si cones. As a result, polycrystalline diamonds are deposited on each Si cone.  相似文献   

3.
The characteristics of diamond synthesis by 2.45 GHz microwave plasma chemical vapor deposition (CVD) under pressures greater than atmospheric pressure were investigated. The deposits on Si substrates were identified by scanning electron microscopy and Raman spectroscopy. The growth rate of diamond was found to be 250 μm/h at 300 kPa, which is ten times greater than that of the conventional low-pressure CVD method. In order to make high-speed deposition of diamond effective, the diamond growth rates for gas-phase microwave plasma CVD were compared to those from the in-liquid plasma CVD method. The growth rate was found to increase as system pressure increased, displaying the same tendency of that in-liquid plasma CVD. The amounts of input microwave energy per unit volume of diamond in the gas-phase and in-liquid plasma CVD methods were also compared. The amount of input microwave energy per unit volume of diamond was found to be 0.6 to 1 kWh/mm3.  相似文献   

4.
Diamond films have been deposited by the microwave plasma assisted chemical vapor deposition technique using an ultra short bias enhanced nucleation step to synthesize highly oriented diamond films on single silicon substrate. Firstly in this paper, we focus on the bias enhanced nucleation process to obtain homogeneous and reproducible diamond deposits. By optimizing the process, we obtained a crystal density value of 109 cm−2 on the whole substrate surface for a reduced polarization time of 60 s. Then, using scanning electron microscopy and image analysis, we report cartographies of crystal densities, covering rate and average radius on the whole sample surface. Next, we analyze a local area of the surface to produce a size distribution of the particles versus their type. Lastly, we present a discussion on the ratio of epitaxial crystals.  相似文献   

5.
Boron nitride (BN) films with different cubic and hexagonal phase compositions were deposited on silicon substrates via diamond interlayers by magnetron sputtering and electron cyclotron resonance microwave plasma chemical vapor deposition. The tribological behaviors of the BN films were investigated systematically using a ball-on-disc tribometer with silicon nitride as the counterpart. Comparison studies were also performed on sintered cubic and hexagonal BN compacts. The influence of phase compositions and surface roughness of BN coatings on their tribological characteristics was studied. The cubic BN (cBN) films showed excellent wear resistance against silicon nitride. The wear rate of the cBN films was estimated to be about 1.0 × 10?7 mm3/N m by measuring the cross-sectional area of the wear track after the sliding test over a distance of 12 km.  相似文献   

6.
Microwave plasma assisted synthesis of diamond is experimentally investigated using high purity, 2–5% CH4/H2 input gas chemistries and operating at high pressures of 180–240 Torr. A microwave cavity plasma reactor (MCPR) was specifically modified to be experimentally adjustable and to enable operation with high input microwave plasma absorbed power densities within the high-pressure regime. The modified reactor produced intense microwave discharges with variable absorbed power densities of 150–475 W/cm3 and allowed the control of the discharge position, size, and shape thereby enabling process optimization. Uniform polycrystalline diamond films were synthesized on 2.54 cm diameter silicon substrates at substrate temperatures of 950–1150 °C. Thick, freestanding diamond films were synthesized and optical measurements indicated that high, optical-quality diamond films were produced. The deposition rates varied between 3 and 21 μm/h and increased as the operating pressure and the methane concentrations increased and were two to three times higher than deposition rates achieved with the MCPR operating with equivalent input methane concentrations and at lower pressures (≤ 140 Torr) and power densities.  相似文献   

7.
The mechanisms involved in the diamond nucleation on 3C–SiC surfaces have been investigated using a sequential in situ approach using electron spectroscopies (XPS, XAES and ELS). Moreover, diamond crystals have been studied by HRSEM. The in situ nucleation treatment allows a high diamond nucleation density close to 4 × 1010 cm 2. During the in situ enhanced nucleation treatment under plasma, a negative bias was applied to the sample. The formation of an amorphous carbon phase and the roughening of the 3C–SiC surface have been observed. The part of these competing mechanisms in diamond nucleation is discussed.  相似文献   

8.
Thin films of polycarbosilane (PCS) were coated on a Si (100) wafer and converted to silicon carbide (SiC) by pyrolyzing them between 800 and 1150 °C. Granular SiC films were derived between 900 and 1100 °C whereas smooth SiC films were developed at 800 and 1150 °C. Enhancement of diamond nucleation was exhibited on the Si (100) wafer with the smooth SiC layer generated at 1150 °C, and a nucleation density of 2 × 1011 cm 2 was obtained. Nucleation density reduced to 3 × 1010 cm 2 when a bias voltage of − 100 V was applied on the SiC-coated Si substrate. A uniform diamond film with random orientations was deposited to the PCS-derived SiC layer. Selective growth of diamond film on top of the SiC buffer layer was demonstrated.  相似文献   

9.
We present investigation of nanocrystalline diamond films deposited in a wide temperature range. The nanocrystalline diamond films were grown on silicon and glass substrates from hydrogen based gas mixture (methane and hydrogen) by microwave plasma CVD process. Film composition, nano-grain size and surface morphology were investigated by Raman spectroscopy and scanning electron microscopy. All samples showed diamond characteristic line centred at 1332 cm 1 in the Raman spectrum. Nanocrystalline diamond layers revealed high surface flatness (under 10 nm) with crystal size below 60 nm. Surface morphology of grown films was well homogeneous over glass substrates due to used mechanical seeding procedure. Very thin films (40 nm) were successfully grown on glass slides (i.e. standard size 1 × 3″). An increase in delay time was observed when the substrate temperature was decreased. A possible origin for this behaviour was discussed.  相似文献   

10.
The mechanism of diamond nucleation enhancement by electron emission in the hot filament chemical vapor deposition process has been investigated by scanning electron microscopy, Raman spectroscopy and infrared (IR) absorption spectroscopy. The maximum value of the nucleation density was found to be 1011 cm−2 with a −300 V and 250 mA bias. The electron emission from the diamond coating on the electrode excites a plasma, and greatly increases the chemical species, as we have seen by in situ IR absorption. The experimental studies showed that the diamond and chemical species were transported and scattered from the diamond coating on the electrode and through the plasma towards the substrate surface, where they caused enhanced nucleation.  相似文献   

11.
The influence of traces of oxygen in the process gas on the bias-enhanced nucleation (BEN) of diamond on silicon has been studied in the present work. CO2 in concentrations ranging from 0 to 3000 ppm was added during the nucleation procedure at Ubias=−200 V in microwave plasma chemical vapour deposition (MPCVD). A significant influence of CO2 could already be detected for a concentration of 75 ppm, corresponding to a C:O ratio of 600:1. It resulted in a continuous reduction of the biasing current and a delay in the nucleation process accompanied by a decrease of the final diamond-covered substrate surface area with increasing CO2 concentration. At 3000 ppm, the nucleation was completely suppressed. An etching of diamond nuclei by the oxygen could be excluded from in-situ growth rate measurements under bias. Instead, optical emission spectra of the Hβ Balmer line indicated a decrease in electrical field strength in the plasma above the substrate. For all gas compositions allowing diamond nucleation, epitaxially aligned films could be obtained, provided that the duration of the biasing step was chosen appropriately. Thus, traces of oxygen do not completely suppress epitaxy. However, the in-plane orientation of the films as determined by X-ray diffraction measurements deteriorates with increasing oxygen concentration.  相似文献   

12.
Large-scale heteroepitaxial growth of diamond depends critically on the development of a suitable lattice-matched substrate system. Oxide substrates, notably MgO and SrTiO3, on which thin epitaxial films of iridium serve as a nucleation layer for diamond have already shown considerable promise. We describe here improvements in the growth of single crystal diamond by low-pressure microwave plasma-enhanced CVD. Oxide substrates with flat, low-index surfaces form the initial basis for the process. Iridium was deposited on heated substrates in a UHV electron-beam evaporation system resulting in epitaxial films, typically 150–300 nm thick, with Ir (1 0 0) parallel to the surface of all substrates as confirmed by X-ray and electron backscattering diffraction. Following Ir deposition, the samples were transferred to a CVD reactor where a bias-enhanced nucleation step induced a dense condensate that completely covered the Ir surface. Uniform nucleation densities of order 1012 cm−2 were observed. Interrupted growth studies, carried out at intervals from seconds to minutes subsequent to terminating the nucleation step, revealed a rapid coalescence of grains. One hour of growth resulted in a smooth, nearly featureless, (0 0 1) diamond film. For extended growth runs, slabs of diamond were grown with thickness as great as 38 μm and lateral dimensions near 4 mm. The crystals were transparent in visible light and cleaved on (1 1 1) planes along 〈1 1 0〉 directions, similar to natural diamond. Of particular significance is the successful use of sapphire as an underlying substrate. Its high crystalline perfection results in epitaxial Ir films with X-ray linewidths comparable to those grown on SrTiO3. However, Al2O3 possesses superior interfacial stability at high temperatures in vacuum or in a hydrogen plasma with a better thermal expansivity match to diamond. Since sapphire is available as relatively inexpensive large diameter substrates, these results suggest that wafer-scale growth of heteroepitaxial diamond should be feasible in the near future.  相似文献   

13.
It is well established that argon rich plasmas (> 90% Ar) in Ar/CH4/H2 gas mixtures lead to (ultra)nanodiamond nucleation and growth by microwave plasma chemical vapour deposition (MPCVD). Nonetheless, in the present work, both microcrystalline and nanocrystalline diamond deposits developed under typical conditions for ultrananocrystalline (UNCD) growth by MPCVD. Silicon substrates were pretreated by abrasion using two different diamond powder types, one micrometric (< 0.5 μm) and the other nanometric (∼ 4 nm), the latter obtained by detonation methods. Samples characterization was performed by SEM (morphology), AFM (roughness and morphology) and micro-Raman (structure).For all samples, Raman analysis revealed good crystalline diamond quality with an evident ∼ 1332 cm 1 peak. The Raman feature observed at ∼ 1210 cm 1 is reported to correlate with two other common bands at ∼ 1140 cm 1 and ∼ 1490 cm 1 characteristic of nano- and ultra-nanocrystalline diamond.A new growth process is proposed to explain the observed morphology evolution from nano- to microcrystalline diamond. Based on this, the microcrystalline morphology is in fact a crystallographically aligned construction of nanoparticles.  相似文献   

14.
Homoepitaxial growth of single crystal diamond by microwave plasma chemical vapor deposition in a 2.45 GHz reactor was investigated at high microwave power density varied from 80 W/cm3 to 200 W/cm3. Two methods of achieving high microwave power densities were used (1) working at relatively high gas pressures without local increase of electric field and (2) using local increase of electric field by changing the reactor geometry (substrate holder configuration) at moderate gas pressures. The CVD diamond layers with thickness of 100–300µm were deposited in H2–CH4 gas mixture varying methane concentration, gas pressure and substrate temperature. The (100) HPHT single crystal diamond seeds 2.5 × 2.5 × 0.3 mm (type Ib) were used as substrates. The high microwave power density conditions allowed the achievement of the growth rate of high quality single crystal diamond up to 20 µm/h. Differences in single crystal diamond growth at the same microwave power density 200 W/cm3 for two process conditions—gas pressure 210 Torr (flat holder) and 145 Torr (trapezoid holder)—were studied. For understanding of growth process measurements of the gas temperature and the concentration of atomic hydrogen in plasma were made.  相似文献   

15.
The design and performance of a microwave plasma chemical vapor deposition (MPCVD) reactor based on compressed microwave waveguides and plate-to-plate substrate holders are described. This reactor can be operated at pressures from 10 to 40 kPa with microwave power of 0.4–1.2 kW, and a high plasma power density up to 500 W/cm3 can be obtained. The single-crystal diamond (lower substrate holder) and polycrystalline diamond (upper substrate holder) have been grown by the plate-to-plate MPCVD reactor using high pressure CH4-H2 mixture gases. Experimental results show that high quality single-crystal diamond and polycrystalline diamond were simultaneously synthesized at a growth rate of 25 μm/h and 12 μm/h, respectively. The results indicate that our MPCVD reactor is unique for the synthesis of diamond with high efficiency.  相似文献   

16.
High-quality polycrystalline diamond film has been extremely attractive to many researchers, since the maximum transition frequency (fT) and the maximum frequency of oscillation (fmax) of polycrystalline diamond electronic devices are comparable to those of single crystalline diamond devices. Besides large deposition area, DC arc jet CVD diamond films with high deposition rate and high quality are one choice for electronic device industrialization. Four inch free-standing diamond films were obtained by DC arc jet CVD using gas recycling mode with deposition rate of 14 μm/h. After treatment in hydrogen plasma under the same conditions for both the nucleation and growth sides, the conductivity difference between them was analyzed and clarified by characterizing the grain size, surface profile, crystalline quality and impurity content. The roughness of growth surface with the grain size about 400 nm increased from 0.869 nm to 8.406 nm after hydrogen plasma etching. As for the nucleation surface, the grain size was about 100 nm and the roughness increased from 0.31 nm to 3.739 nm. The XPS results showed that H-termination had been formed and energy band bent upwards. The nucleation and growth surfaces displayed the same magnitude of square resistance (Rs). The mobility and the sheet carrier concentration of the nucleation surface were 0.898 cm/V s and 1013/cm2 order of magnitude, respectively; while for growth surface, they were 20.2 cm/V s and 9.97 × 1011/cm2, respectively. The small grain size and much non-diamond carbon at grain boundary resulted in lower carrier mobility on the nucleation surface. The high concentration of impurity nitrogen may explain the low sheet carrier concentration on the growth surface. The maximum drain current density and the maximum transconductance (gm) for MESFET with gate length LG of 2 μm on H-terminated diamond growth surface was 22.5 mA/mm and 4 mS/mm, respectively. The device performance can be further improved by using diamond films with larger grains and optimizing device fabrication techniques.  相似文献   

17.
For a long time sp2 carbon has been the dominating material for supercapacitor applications. In this paper a new concept of using boron-doped diamond for supercapacitors is proposed. Diamond surface enlargement is realized via bottom-up template-growth. In this method, silicon nanowire electrodes are coated with a thin (~ 100 nm) layer of nanocrystalline diamond (NCD) by microwave enhanced chemical vapor deposition (MWCVD). The quality of overgrowth is characterized by high resolution scanning electron microscopy which reveals a homogeneous coverage of diamond on Si nanowire surface. To enhance the potential window to 4 V, a room temperature ionic liquid is used as electrolyte. The dilution of the ionic liquid is investigated in terms of conductivity and specific capacitance. The capacitance as measured via cyclic voltammetry reaches 105 μF/cm2. An energy density of 84 μJ/cm2 and a high power density of 0.94 mW/cm2 are obtained in combination with good stability of over 10,000 charging/discharging cycles.  相似文献   

18.
Diamond films with highly smooth backside surface have been deposited by positively biasing the substrate during diamond growth in a hot-filament chemical vapor deposition (HFCVD) system. By bonding the diamond film on the glass and wet etching to remove silicon, the highly smooth diamond surface can be exposed and used directly for the fabrication of diamond devices.Silicon substrate was first treated by diamond powder of 625 nm in an ultrasonic bath. By positively biasing the substrate, electron bombardment during diamond growth increases the nucleation density from 108 ∼ 109 cm 2 to 4 × 1011 cm 2. The surface smoothness on the backside of diamond film has thus been improved significantly, inducing root-mean-square roughness of 5 nm. Owing to the extremely high surface smoothness and the high crystalline quality on the backside of diamond film and the high diamond growth rate, the backside surface of the diamond film grown under electron bombardment is particularly suitable for device fabrication.  相似文献   

19.
Diamond–carbon nanocomposites (DCN) containing diamond and graphitic particles, both a few nanometers in size, were studied as the material for field electron emission. Diamond–carbon mass ratio and grain size were varied to optimize field emission properties. The stable and uniform electron emission was observed at fields E=10 V μm−1 with a negligible hysteresis of IV curves. Treatment in microwave hydrogen plasma was found to reduce the threshold field for emission owing to preferential etching of carbon component and surface relief sharpening. Ultrathin chemical vapour deposition diamond films can be easily grown on DCN due to the very high nucleation density inherent to this composite.  相似文献   

20.
We investigate the first stages of nanocrystalline diamond (NCD) thin film growth at low substrate temperature. NCD films were grown on silicon substrates by microwave plasma enhanced chemical vapor deposition (CVD) for 0–300 min at a temperature of 410 °C. Si substrates were ultrasonically seeded in suspension of detonation nanocrystalline diamond powder. The seeding density approached values up to 1  1012 cm 2, which allows growth of ultra-thin fully closed layers. Stagnation of the AFM roughness indicates that the low temperature NCD growth is a) delayed due to the surface contamination of the used nanodiamond powder and b) possibly dominated by the growth in the lateral direction. XPS measurements showed that the measured surface exhibits changes from a multi-phase composite (seeding layer) to single-phase one (NCD layer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号