首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For biomedical application in the field of artificial hip joints diamond-like carbon (DLC) coatings have been widely studied due to their tribological properties. The wear particles as the main factor limiting the life expectancy of hip joints have attracted more and more interest, not only the number of them, but also the distribution of their size. In this study we have deposited DLC coatings on stainless steel (P2000) by a vacuum arc adjustable from anodic to cathodic operation mode, with the anode–cathode diameter ratio of da/dc = 3/1 at a DC bias of − 250 V to − 1000 V. To improve the adhesion of the DLC coating on P2000, titanium as a metallic interlayer was deposited by cathodic vacuum arc evaporation. The internal structure of the coating was investigated by the visible Raman spectroscopy with the four-Gaussian curve fitting method. Comparing the results with the previous work (coatings deposited with da/dc = 1/1), it was found that the anode–cathode diameter ratio has an effect on the structure (e.g. ID/IG) as well as the wear particle size distribution. It was shown that the maximum of the frequency distribution e.g. at − 1000 V bias can be shifted to below 1 μm with increasing da/dc.  相似文献   

2.
With filtered pulsed arc discharge (FPAD) method it is possible to achieve very high adhesion of high quality diamond-like carbon (DLC). Here we explain this high adhesion with the oxide reduction and consequent carbide formation and ion mixing of the substrate when exposed to high temperature carbon plasma ions. The use of intensive high energy (> 2 keV) carbon plasma is the only practical method to achieve ultimate adhesion of DLC. With this unique method presented, the adhesion properties and the substrate interface electron spectroscopy for chemical analysis (ESCA) spectra of DLC coatings are independent of the pre-treatment of silicon substrates. High adhesion and proper selection of substrate enables to deposit thick DLC coatings (> 10 μm). We also show how the DLC deposition system can be improved and simplified.  相似文献   

3.
In this work, tetrahedral diamond-like carbon (DLC) films are deposited on Si, Ti/Si and Au/Si substrates by a new plasma deposition technique — filtered arc deposition (FAD). Their electron field emission characteristics and fluorescent displays of the films are tested using a diode structure. It is shown that the substrate can markedly influence the emission behavior of DLC films. An emission current of 0.1 μA is detected at electric field EDLC/Si=5.6 V/μm, EDLC/Au/Si=14.3 V/μm, and EDLC/Ti/Si=5.2 V/μm, respectively. At 14.3 V/μm, an emission current density JDLC/Si=15.2 μA/cm2, JDLC/Au/Si=0.4 μA/cm2, and JDLC/Ti/Si=175 μA/cm2 is achieved, respectively. It is believed that a thin TiC transition layer exists in the interface between the DLC film and Ti/Si substrate.  相似文献   

4.
Diamond-like carbon (DLC) coatings were successfully deposited on carbon nanotube (CNT) films with CNT densities of 1 × 109/cm2, 3 × 109/cm2, and 7 × 109/cm2 by a radio frequency plasma-enhanced chemical vapor deposition (CVD). The new composite films consisting of CNT/DLC were synthesized to improve the mechanical properties of DLC coatings especially for toughness. To compare those of the CNT/DLC composite films, the deposition of a DLC coating on a silicon oxide substrate was also carried out. A dynamic ultra micro hardness tester and a ball-on-disk type friction tester were used to investigate the mechanical properties of the CNT/DLC composite films. A scanning electron microscopic (SEM) image of the indentation region of the CNT/DLC composite film showed a triangle shape of the indenter, however, chippings of the DLC coating were observed in the indentation region. This result suggests the improvement of the toughness of the CNT/DLC composite films. The elastic modulus and dynamic hardness of the CNT/DLC composite films decreased linearly with the increase of their CNT density. Friction coefficients of all the CNT/DLC composite films were close to that of the DLC coating.  相似文献   

5.
The atmospheric pressure plasma-enhanced chemical vapor deposition of diamond-like carbon (DLC) has been investigated. The DLC coatings were grown with a mixture of acetylene, hydrogen and helium that was fed through a linear plasma source. The plasma was driven with radio frequency power at 27.12 MHz. Deposition rates exceeded 0.10 µm/min at substrate temperatures between 155 and 200 °C. Solid-state carbon-13 nuclear magnetic resonance revealed that the coatings contained approximately 43% sp2-bonded carbon and 57% sp3-bonded carbon. Coefficient of friction values for the coatings were found to be 0.24 ± 0.02, which is within the range observed for vacuum deposited DLC.  相似文献   

6.
A superhard hydrogen-free amorphous diamond-like carbon (DLC) film was deposited by pulsed arc discharge using a carbon source accelerator in a vacuum of 2×10−4 Pa. The growth rate was about 15 nm/min and the optimum ion-plasma energy was about 70 eV. The impact of doping elements (Cu, Zr, Ti, Al, F(Cl), N) on the characteristics of DLC films deposited on metal and silicon substrates was studied aiming at the choice of the optimum coating for low friction couples. The microhardness of thick (≥20 μm) DLC films was studied by Knoop and Vickers indentations, medium thick DLC films (1–3 μm) were investigated using a ‘Fischerscope’, and Young's module of thin films (20–70 nm) was studied by laser induced surface acoustic waves. The bonds in DLC films were investigated by electron energy loss spectroscopy (EELS), X-ray excited Auger electron spectroscopy (XAES), and X-ray photoelectron spectroscopy (XPS). The adhesion of DLC films was defined by the scratch test and Rockwell indentation. The coefficient of friction of the Patinor DLC film was measured by a rubbing cylinders test and by a pin-on-disk test in laboratory air at about 20% humidity and room temperature. The microhardness of the Patinor DLC film was up to 100 GPa and the density of the film was 3.43–3.65 g/cm3. The specific wear rate of the Patinor DLC film is comparable to that of other carbon films.  相似文献   

7.
Microstructural and electrochemical characterization of diamond like carbon (DLC) ion beam-deposited on AlTiC (70 wt% Al2O3+30 wt% TiC) substrate has been carried out. Tapping mode atomic force microscopy (AFM) imaging showed that the island-like topography of DLC-coated substrates is similar to the un-coated one, indicating the uniform coverage of DLC without visible pinholes. Confocal micro-Raman analysis demonstrated that the total Raman intensity, as well as the ID/IG ratio, increases with the coating thickness. Electrochemical impedance spectra showed that with the increasing DLC coating thickness, a transition from one-time constant response to two-time constant response occurred when the coating thickness equals 5 nm (IS2), indicating the existence of micro-defects in the coatings which are invisible for AFM. More detailed analysis using the equivalent circuit model revealed that the charge transfer resistance (Rct) at electrolyte/substrate interface and the resistance (Rp) related to DLC coatings increase significantly with the coating thickness, while the double-layer capacitance (Cdl) and the capacitance (Cco) of DLC coatings decrease dramatically. All these phenomena can be interpreted in terms of the evolution of the subsurface diamond-like phase (sp3-bond) and the reduction of micro-defects in the DLC coatings with the growing film. As a result, an increase in the corrosion potential (Ec) with the DLC coating thickness was also detected using the Tafel technique. In consequence, the DLC coatings can improve significantly the anti-corrosion properties of AlTiC substrates when the coating thickness is more than a few tens of nanometres.  相似文献   

8.
The purpose of this study was to examine the influence of various polymeric materials on the adhesion characteristics of a rapid setting, minimum defect mortar based upon a blend of calcium sulfoaluminate (CSA) cement and ordinary Portland cement (OPC). Four different polymer powders were added to the base mortar at a polymer/cement ratio (p/c) of 0.15. The water/cement (w/c) ratio remained constant for all mortars at 0.42. The polymeric materials consisted of an acrylic polymer powder with Tg=−10 °C, a styrene butadiene rubber (SBR) polymer powder with Tg=15 °C and two vinyl acetate/ethylene (VAE) polymer powders, one with Tg=−7 °C and the other with Tg=20 °C. Mortars were tested for direct tensile strength following ASTM C307 and pull-off strength following a variant of ASTM C1583 after curing for either 24 h or 13 days at ambient laboratory temperature of 23 °C. Mortars were cast over concrete, wood, metal and glass substrates. Pull-off tests over concrete substrate resulted in substrate failure for all polymer modified mortars. Pull-off tests cast over wood, glass and metal substrate materials highlighted the SBR polymer for demonstrating the poorest adhesion performance. Statistical analysis was performed with Minitab software.  相似文献   

9.
Thin films of a novel, nanocomposite material consisting of diamond-like carbon and polycrystalline/amorphous TiOx (DLC-TiOx, x  2) were prepared using pulsed direct-current plasma enhanced chemical vapour deposition (PECVD). Results from Raman spectroscopy indicate that the DLC and TiOx deposit primarily as segregated phases. Amorphous TiO2 is found to be present on the surface region of the film and there is evidence for the presence of crystalline TiO in the bulk of the film. The hydrophilicity of the DLC-TiOx films increased with increasing titanium content. Culture studies with human osteoblasts revealed that the differences in three-day cell adhesion properties (count, morphology and area) between DLC and DLC-TiOx films containing up to 13 at.% Ti were not statistically significant. However, the cell count was significantly greater for the films containing 3 at.% of Ti in comparison to those containing 13 at.% of Ti. A post-plasma treatment with Ar/O2 was used to reduce the water contact angle, θ, by nearly 40° on the DLC-TiOx films containing 3 at.% of Ti. A cell culture study found that the osteoblast count and morphology after three days on these more hydrophilic films did not differ significantly from those of the original DLC-TiOx films. We compare these results with those for SiOx-incorporated DLC films and evaluate the long-term osteoblast-like cell viability and proliferation on modified DLC surfaces with water contact angles ranging from 22° to 95°.  相似文献   

10.
《Ceramics International》2015,41(8):9849-9861
Four types of different hard transition metal nitrides (TMN:ZrN, CrN, WN and TiN) coatings were deposited on Si (100) and 316LN stainless steel substrates using DC magnetron sputtering. A comprehensive study of microstructure and substrate dependent tribo-mechanical properties of TMN coatings was carried out. Higher hardness (H) and elastic modulus (E) were obtained for WN (H=40 GPa and E=440 GPa) and TiN (H=30 GPa and E=399 GPa) coatings. This is related to the formation of (100) and (111) preferred orientations in WN and TiN coatings, respectively. However, the less hardness and elastic modulus were obtained for ZrN and CrN coatings where (200) orientation is preferred. Remarkably, low friction coefficient (0.06–0.57) and higher wear resistance in the coatings deposited on steel substrates are directly associated with the higher resistance to plastic deformation (H3/E2) and the presence of intrinsic compressive stress. Three body wear modes enhanced the friction coefficient (0.15–0.62) and the wear rate in the coatings deposited on Si substrates. This is primarily associated with low fracture toughness of brittle single crystalline Si (100) substrates. Steel-on-steel contact was dominated in ZrN/steel sliding system. This occurs due to the severe adhesive wear mode of steel ball, whereas, the abrasive wear modes were attained for the CrN, WN and TiN coatings sliding against steel balls.  相似文献   

11.
Cubic boron nitride (cBN) coatings were deposited on silicon nitride (Si3N4) cutting inserts through conductive boron-doped diamond (BDD) buffer layers in an electron cyclotron resonance microwave plasma chemical vapor deposition (ECR MPCVD) system. The adhesion and crystallinity of cBN coatings were systematically characterized, and the influence of doping level of BDD on the phase composition and microstructure of the cBN coatings were studied. The nano-indentation tests showed that the hardness and elastic modulus of the obtained cBN coatings were 78 GPa and 732 GPa, respectively. The tribological properties of the cBN coatings were evaluated by using a ball-on-disc tribometer with Si3N4 as the counterpart. The coefficient of the friction and the wear rate of the cBN coatings were estimated to be about 0.17 and 4.1 × 10 7 mm3/N m, respectively, which are remarkably lower than those of titanium aluminum nitride (TiAlN) coatings widely used in machining ferrous metal. The results suggest that cBN/BDD coated Si3N4 inserts may have great potentials for advanced materials machining.  相似文献   

12.
In this study we developed composite coatings consisting of amorphous hydrogenated carbon (a-C:H) and molybdenum-disulfide (MoS2), and clarified their microstructure. In addition, we interpreted the tribological properties of the composite coatings in the viewpoint of a deposition-induced microstructural modification. The coatings were produced by the hybrid deposition technique of RF-generated methane and argon plasma and DC magnetron co-sputtering of MoS2 target. The deposition parameter investigated in this study was methane flow rate. Structural analyses were performed using a transmission electron microscope (TEM) and an atomic force microscope (AFM). Friction tests were conducted using a ball-on-disk type tribometer. From an electron micrograph, it was confirmed that nano-clusters were embedded into an amorphous carbon host matrix. Surface roughness of the composite coating was ~ 0.25 nm in Ra compared to 5.0 nm in Ra of sputtered MoS2. The concentration measurements were performed, and the results show that the sulfur and molybdenum concentration ratio, [S]/[Mo], is ~ 0.9, which indicates that the amount of sulfur was reduced due to the discharged plasma. In friction tests, composite coatings showed high friction in a vacuum condition. It was considered that lubricant MoS2 lamellar structures showing super-low friction in a vacuum condition during friction could not be formed between ball and coating during friction because of the lack of sulfur in embedded clusters.  相似文献   

13.
Composites of epoxy resin with diamond-like carbon (DLC) flakes were fabricated. The DLC flakes were prepared from a DLC film deposited by chemical vapor deposition on an aluminum substrate. The tribological properties of composites were evaluated in air and water environments using a reciprocating friction tester and an AISI 440C mating ball. The friction coefficient of the epoxy composite decreased from 0.90 to 0.69 in air and from 0.71 to 0.29 in water with the addition of DLC flakes. The specific wear rate of the composite also decreased from 5 × 10? 5 to 7 × 10? 6 mm3/N m in air and from 4 × 10? 5 to 4 × 10? 6 mm3/N m in water. In contrast, the wear of the mating ball increased. Furthermore, the tribological properties of DLC flakes as an additive in water were evaluated. The suspension of powdered DLC in water reduced the friction coefficient of epoxy resin against the AISI 440C mating ball. Furthermore, the wear of the resin was negligibly small, although severe abrasive wear on the mating ball was observed.  相似文献   

14.
The work is devoted to the investigation of nanohardness and tribological properties in TiB2 coatings deposited on austenitic steel substrates using an unbalanced magnetron sputtering with the focus on the coatings prepared under small negative bias to reduce compressive stresses. The coating prepared under floating potential exhibited nanocomposite microstructure with the size of TiB2 (hcp) nanocrystallites in the range of 2–7 nm. It is in contrast with the textured microstructure typically developed under higher negative bias. The reduction of the compressive stresses up to ?0.4 GPa while keeping the nanohardness >30 GPa and the coefficient of friction of 0.77 were obtained in this coating. The highest nanohardness of 48.6 ± 3.1 GPa and indentation modulus of 562 ± 18 GPa were achieved at ?100 V bias in the textured coating. The friction mechanisms include mechano-chemical formation of a tribological oxide film between the sliding partners combined with an abrasive wear.  相似文献   

15.
The non-thrombogenicity of oxygen-plasma-treated DLC films was investigated as surface coatings for medical devices. DLC films were deposited on polycarbonate substrates by a radio frequency plasma enhanced chemical vapor deposition method using acetylene gas. The deposited DLC films were then treated with plasma of oxygen gas at powers of 15 W, 50 W, and 200 W. Wettability was evaluated by water contact angle measurements and the changes in surface chemistry and roughness were examined by X-ray photoelectron spectroscopy and atomic force microscope analysis, respectively. Each oxygen-plasma-treated DLC film exhibited a hydrophilic nature with water contact angles of 11.1°, 17.7° and 36.8°. The non-thrombogenicity of the samples was evaluated through the incubation with platelet-rich plasma isolated from human whole blood. Non-thrombogenic properties dramatically improved for both 15 W- and 50 W-oxygen-plasma-treated DLC films. These results demonstrate that the oxygen plasma treatment at lower powers promotes the non-thrombogenicity of DLC films with highly hydrophilic surfaces.  相似文献   

16.
A technique to coat hydrogen-free diamond-like carbon (DLC) films on polytetrafluoroethylene (PTFE) substrates has been developed by sputtering of a negatively biased graphite target in a mixture of argon and nitrogen plasma. The coated films were characterized by various methods to investigate their chemical, electronic features, and particularly their biomedical properties. DLC films produced by this method have up to 20% sp3 carbon bonds depending on the nitrogen concentration in the plasma. Raman spectroscopy revealed that, bond-disorder increases with nitrogen doping. The average grain size of DLC decreases in the nitrogen doped samples by almost 30%. The roughness of the uncoated PTFE substrate surfaces decreased dramatically from 660 nm to 170 nm after DLC coating. However, the nitrogen contents in the plasma have little effects on the roughness, the cluster size, and shapes. Electronic band gap of the samples decreases with adding nitrogen from ~ 2 eV in nitrogen-free samples to ~ 1 eV in nitrogenated samples. Lower adhesion and aggregation of platelets on PTFE surfaces coated with DLC-10% nitrogen and DLC-20% nitrogen have been observed while there is greater adhesion of platelets on DLC-30% nitrogen and DLC-40% nitrogen.  相似文献   

17.
Ultra-thin layers of 7-octenyltrimethoxysilane (7-OTMS) and of 7-OTMS mixed with n-octyltrimethoxysilane (n-OTMS) (1/1 and 1/10 v/v) have been prepared as adhesion primers for silicone coatings on mechanically polished AA2024 aluminum alloy. The characterization of the silane grafting has been carried out by X-ray photoelectron spectroscopy (XPS), polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) and water contact angle measurements. Sylgard®184 silicone has been spin-coated and cured on bare and modified aluminum to form 15 μm polymer films. Qualitative peel tests (ASTM D3359) and scanning electron microscopy (SEM) point to the beneficial effect of the 7-OTMS layer to the adhesion whereas mixed layers show comparatively poor adhesion.  相似文献   

18.
Hydrogen-free diamond-like carbon (DLC) films were deposited by a new surface-wave-sustained plasma physical vapor deposition (SWP-PVD) system in various conditions. Electron density was measured by a Langmuir probe; the film thickness and hardness were characterized using a surface profilometer and a nanoindenter, respectively. Surface morphology was investigated using an atomic force microscope (AFM). It is found that the electron density and deposition rate increase following the increase in microwave power, target voltage, or gas pressure. The typical electron density and deposition rate are about 1.87 × 1011–2.04 × 1012 cm 3 and 1.61–14.32 nm/min respectively. AFM images indicate that the grain sizes of the films change as the experimental parameters vary. The optical constants, refractive index n and extinction coefficient k, were obtained using an optical ellipsometry. With the increase in microwave power from 150 to 270 W, the extinction coefficient of DLC films increases from 0.05 to 0.27 while the refractive index decreases from 2.31 to 2.11.  相似文献   

19.
Instrumented indentation, AFM (atomic force microscopy) and tribological studies were performed on PE CVD (Plasma Enhanced Chemical Vapor Deposition) nanocomposite WC–C coatings to investigate the effects of surface roughness on the reliability of nanoindentation data and the possibilities of different AFM modes in nanomechanical testing, which can be used as a feedback to optimize deposition technology from the viewpoint of their mechanical properties. It was confirmed that surface roughness below 30 nm is necessary to keep the scatter of indentation modulus, EIT, and hardness, HIT, below 15%. PF QNM (Peak Force Quantitative NanoMechanical) mode was successfully applied for qualitative mapping of the elastic modulus of coatings with the stiffness above 300 GPa. LFM (lateral force microscopy) mode showed only weak contrast and quantitative measurements in both AFM modes require precise calibration. Coefficients of friction of the studied WC–C coatings were below 0.2 at RT, but increased to 0.7–0.8 at 450 °C due to the formation of a transfer film. Optimization of the deposition conditions based on nanoindentation resulted in the increase of EIT from ~220 GPa to 350 GPa and HIT from ~17 GPa to ~29 GPa.  相似文献   

20.
Silicon-oxide incorporated amorphous hydrogenated diamond-like carbon films (SiOx–DLC, 1  x  1.5) containing up to 24 at.% of Si (H is excluded from the atomic percentage calculations reported here) were prepared using pulsed direct current plasma-enhanced chemical vapour deposition (DC-PECVD). Molecular structure, optical properties and mechanical properties of these films were assessed as a function of Si concentration. The spectroscopic results indicated two structural regimes. First, for Si contents up to ~ 13 at.%, SiOx–DLC is formed as a single phase with siloxane, O–Si–C2, bonding networks. Second, for films with Si concentrations greater than 13 at.%, SiOx–DLC with siloxane bonding and SiOx deposit simultaneously as segregated phases. The variations in mechanical properties and optical properties as a function of Si content are consistent with the above changes in the film composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号