首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
魏琳  廖梓豪  蒋方明 《化工学报》2019,70(z2):146-154
质子交换膜燃料电池(PEMFC)具有高能量比、环境友好、工作温度低等优点,可用作未来新能源汽车的能量来源,具有很好的发展前景。然而零下温度启动时,电池内水结冰堵塞通道,严重影响电池启动性能及寿命。提出了PEMFC冷启动三维多物理场数值模型,考虑了冷却剂流动与传热的影响,对冷启动过程组分浓度、电势、温度、含冰量等参数进行了可视化分析。数值模拟结果与试验吻合良好,表明模型可用于预测电池冷启动性能并用于机理研究。  相似文献   

2.
In this paper, experimental investigations on the influence of operational parameters on PEM fuel cell cold start are presented. The effect of current density, stack impedance at 1 kHz prior to start, as well as gas flow rate, gas pressure, coolant flow rate and surrounding subfreezing temperature are studied. The experimental apparatus is briefly described. It includes a main unit at room temperature and a smaller separate unit in a climatic chamber. Low current density, high impedance prior to start, moderate subfreezing temperature (–5 °C), high gas flow rate, low gas pressure and low coolant flow rate are found to have a positive impact on the cold start performance. Combining these parameters, self start‐up of the fuel cell without additional energy is achieved at –5 °C in 30 min. The whole set of observations leads to the following hypotheses on freeze mechanism: in the first phase, dry membranes and low current lead to a transient phase of membrane humidification. Then, in the second phase, ice clogging of the active layers occurs. In the third phase, a variable quantity of the produced water reaches the gas diffusion layers and channels.  相似文献   

3.
A multiphase, three-dimensional model has been developed to describe non-isothermal cold start of a polymer electrolyte fuel cell (PEFC) and to delineate intricate interactions between ice formation and heat generation during cold start. The effect of rising cell temperature is numerically explored by comparing a non-isothermal cold start with an isothermal one. It is found that more water is transported into the membrane and less ice formation occurs in the cathode catalyst layer (CL) in the presence of rising cell temperature. In addition, the more hydrated membrane and the rising cell temperature greatly lower the membrane resistance, thus giving rise to higher cell voltage. A lumped thermal analysis significantly over-estimates the overall thermal requirement of self-startup as a cell requires only a portion of its active area to reach the freezing point and be ice-free and operable. It is also found that pre-startup conditions have significant influence on cold start. Procedures to minimize residual water inside the cell prior to cold start, such as gas purge, are critically important. Finally, non-isothermal cold start becomes much easier from higher ambient temperatures.  相似文献   

4.
真空制冰过程中水滴动态特性   总被引:4,自引:3,他引:1       下载免费PDF全文
为研究真空制冰水滴温度影响因素并进行分析,搭建了真空制冰动态特性研究实验台,进行相关实验,采集了相关图像和实验数据。对采集的图像进行了定性分析。采集的实验数据主要是在不同环境温度、环境压力、供水水温、水质、粒径及水滴下落初速度等情况下水滴温度随时间的变化情况,并与模拟计算值一并进行了对比分析。分析得出环境温度、供水水温、下落初速度对其影响较小,而环境压力、水滴粒径对其影响较为明显,供水水质对其影响比较特殊,主要表现在液滴的最大过冷度上。  相似文献   

5.
In this paper, the electrochemical kinetics, oxygen transport and solid water formation within the cathode electrode of polymer electrolyte fuel cells (PEFCs) during cold start is investigated. We specifically evaluate the key parameters that govern the self-startup of PEFCs by considering a wide range of the relevant factors. These parameters include characteristic time scales of cell warm-up, ionomer hydration in the catalyst layer, ice build-up and melting, as well as the ratios of the time constants. Supporting experimental observation using neutron imaging and isothermal cold start experiment is discussed. Gas purge is found to facilitate the PEFC cold start but the improvement may be relatively small compared with other methods such as selecting suitable materials and modifying the cell design. We define a three-step electrode process for cold start and conduct a one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on the cell cold start performance. The ionic conductivity data of Nafion® 117 membrane at subfreezing temperature, evaluated from experiment, is utilized to analyze the temperature dependence of the ohmic polarization during cold start.  相似文献   

6.
Cold start is critical to the commercialization of proton exchange membrane fuel cell (PEMFC) in automotive applications. Dynamic distributions of current and temperature in PEMFC during various cold start processes determine the cold start characteristics, and are required for the optimization of design and operational strategy. This study focuses on an investigation of the cold start characteristics of a PEMFC through the simultaneous measurements of current and temperature distributions. An analytical model for quick estimate of purging duration is also developed. During the failed cold start process, the highest current density is initially near the inlet region of the flow channels, then it moves downstream, reaching the outlet region eventually. Almost half of the cell current is produced in the inlet region before the cell current peaks, and the region around the middle of the cell has the best survivability. These two regions are therefore more important than other regions for successful cold start through design and operational strategy, such as reducing the ice formation and enhancing the heat generation in these two regions. The evolution of the overall current density distribution over time remains similar during the successful cold start process; the current density is the highest near the flow channel inlets and generally decreases along the flow direction. For both the failed and the successful cold start processes, the highest temperature is initially in the flow channel inlet region, and is then around the middle of the cell after the overall peak current density is reached. The ice melting and liquid formation during the successful cold start process have negligible influence on the general current and temperature distributions.  相似文献   

7.
The Eulerian two-phase boiling model of the subcooled boiling of coolant in a 3 × 3 fuel assembly is established and compared with the experimental data to verify its accuracy. The effects of four shapes of bow deformation on subcooled boiling flow and heat transfer characteristics are obtained by comparing and analyzing the distributions of thermal–hydraulic parameters, including the axial wall superheat, liquid phase temperature, axial void fraction, various heat fluxes, heat transfer coefficient, and turbulent kinetic energy. All shapes of bow deformation will lead to the redistribution of coolant among different subchannels, and the distributions of thermal–hydraulic parameters would be greatly affected. The bow deformation of fuel rod easily causes local boiling, which results in local high temperature of liquid phase and bubble accumulation, and a decrease in the area of high liquid phase heat transfer coefficient on the surface of bowing fuel rod. Additionally, the non-uniform distribution of turbulent kinetic energy caused by bow deformation in different axial sections not only affects the heat transfer performance of coolant, but also causes the increment in pressure drop, which has negative effects on the safe operation of the nuclear reactor. This paper can provide data and theoretical support for engineering design.  相似文献   

8.
This project designs and simulates a cogeneration system of proton exchange membrane fuel cell using Matlab/Simulink software and Thermolib heat module components. The system not only satisfies the need for electric power, but also provides heat recovery for future uses, thus increasing energy transfer efficiency. PEM fuel cell‐based cogeneration system is introduced, including the hydrogen supply subsystem, air supply subsystem, load control subsystem, real‐time monitoring block, and heat recovery subsystem. The complete fuel cell‐based cogeneration system is constructed by assembling the fuel cell stack, fuel, coolant flow rate control system, and all the subsystems. In addition to the fuel cell experiment, influencing factors on the fuel cell‐based system, such as the fuel inhale rate, coolant flow rate, system temperature, fuel humidification, thermal efficiency, electrical efficiency, and combined heat and power (CHP) system efficiency, are analyzed and charted regarding different loads. In this system, with the power at 3 kW, the CHP efficiency reaches 64%. The CHP efficiency is 76.6% with the load power at 4 kW. When the power is at 5 kW, the thermal efficiency reaches 36.9% and the CHP efficiency reaches 82.9%.  相似文献   

9.
The effect of suspended wax crystals in wax‐solvent mixtures on the solid deposition process in the cold flow regime was investigated experimentally and analyzed with a steady‐state heat transfer model. A bench‐scale flow‐loop apparatus, incorporating a concentric‐cylinder heat exchanger, was used to measure solid deposition, in the cold flow and hot flow regimes, from wax‐solvent mixtures under turbulent flow conditions. The deposition experiments were performed with two wax‐solvent mixtures, at two flow rates, with two coolant temperatures, at 8 wax‐solvent mixture temperatures, and for several deposition times. The role of wax crystals on the deposition process was investigated by repeating some of the deposition experiments with a pre‐filtered wax‐solvent mixture. In all experiments, the deposit was formed rapidly such that a thermal steady‐state was attained within 30 min. The deposit mass increased with decreasing the mixture temperature in the hot flow regime, reached a maximum as the mixture temperature became equal to the WAT, and then decreased linearly to zero in the cold flow regime as the mixture temperature approached the coolant temperature. Also, the deposit mass decreased with an increase in the Reynolds number and the coolant temperature. The data and predictions confirmed the solid deposition to be a thermally‐driven process. The experimental deposit mass results in the cold flow regime, supported by model predictions, were identical for the unfiltered and filtered mixtures, which showed that the suspended wax crystals do not affect the deposit mass or thickness.  相似文献   

10.
颜昌彪 《广东化工》2011,38(2):40-42,81
LOCA事故是压水堆核电站的设计基准事故,需设计性能先进可靠并具有包络性的LOCA鉴定试验台对应用于核电站的K1类设备进行鉴定试验。文章针对二代机组和三代机组(AP1000)鉴定试验曲线的要求,对LOCA鉴定试验台设计的各关键点进行分析研究,获得了解决各种问题的方法。并最终设计出满足鉴定要求的LOCA鉴定试验台。  相似文献   

11.
Numerical studies of cold-start phenomenon in PEM fuel cells   总被引:1,自引:0,他引:1  
Hua Meng 《Electrochimica acta》2008,53(22):6521-6529
In this paper, a PEM fuel cell model for cold-start simulations has been employed for numerical investigations of the cell startup characteristics from subfreezing temperatures. The effects of many key parameters on fuel cell isothermal cold-start behaviors have been carefully examined. Numerical results indicate that a high gas flow rate in the cathode gas channel, a low initial membrane water content, a low current density under the constant current condition, and a high cell voltage under the constant cell voltage operation are beneficial for the PEM fuel cell isothermal cold-start processes. Increasing the startup cell temperature would significantly delay ice formation and consequently lead to longer cold-start time. Therefore, incorporating internal and external heating sources in the cell design scheme is very important for achieving fast and successful cold start of a PEM fuel cell from subfreezing temperatures.  相似文献   

12.
胡桂林  樊建人  岑可法 《化工学报》2006,57(11):2693-2698
为描述质子交换膜燃料电池的动态过程,发展了一个基于计算流体动力学的非稳态、非等温的三维两相流数学模型.应用模型对一蛇形流道结构的质子交换膜燃料电池单体进行了数值计算,得到了电池启动过程中电池阴极侧膜表面温度和电流密度等特征参数的动态过程变化曲线.最后,分析了阴极入口速度、湿度和电池电压阶跃变化后电池特性的动态响应特性.结果表明:电池的启动时间和阶跃响应时间均为秒的数量级,与大多数模型模拟的结果相一致.  相似文献   

13.
Starting at low temperatures (below 0 °C) is an important issue for current and near future diesel engine technology. Low ambient temperature causes long cranking periods or complete misfiring in small diesel engines and, as a consequence, an increased amount of pollutant emissions. This paper is devoted to study the influence of nozzle geometry on ignition and combustion progression under glow-plug aided cold start conditions. This study has been carried out in an optically accessible engine adapted to reproduce in-cylinder conditions corresponding to those of a real engine during start at low ambient temperature. The cold start problem can be divided in two parts in which nozzle geometry has influence: ignition and main combustion progress. Ignition probability decreases if fuel injection velocity is increased or if the amount of injected mass per orifice is reduced, which is induced by nozzles with smaller hole diameter or higher orifice number, respectively. Combustion rates increase when using nozzles which induce a higher momentum, improving mixture conditions. For these reasons, the solution under these conditions necessarily involves a trade-off between ignition and combustion progress.  相似文献   

14.
吴铄  叶芳  刘佳兴  郭航  马重芳 《化工学报》2015,66(Z2):180-185
为了深入研究燃料电池内部传热传质之间的关系,以自制的薄膜传感器为测量单元,实现了燃料电池内部温度和热通量的同步在线测量。实验结果表明自制的薄膜传感器可以测量膜电极表面的瞬态变化,且传感器对电池性能的影响较小;同步测量的数据显示,放电过程中温度的动态响应要迟于热流的动态响应,由于膜电极热导率的变化以及甲醇窜流的影响,相对于温度的阶跃变化,热通量呈现持续变化的趋势。  相似文献   

15.
水冷PEMFC热管理系统流量跟随控制策略   总被引:4,自引:0,他引:4       下载免费PDF全文
陈维荣  牛茁  韩喆  刘优贤  刘志祥 《化工学报》2017,68(4):1490-1498
针对传统温度控制策略在水冷型质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)工作中水泵和散热器风扇存在的强耦合性,并为了提高电堆的工作性能和寿命,提出一种流量跟随电流的温度控制策略,根据电堆电流变化调节冷却水流量来控制电堆冷却水进出口温差,通过PID控制器调节散热风扇控制电堆入口温度。在水冷PEMFC热管理平台上对传统控制策略、流量跟随控制策略做了实验对比。结果表明,流量跟随电流控制策略使冷却水出口温度最大超调量减少64.3%,冷却水出入口温差最大偏差减少46.7%,调整时间平均缩短73 s,达到了较高的控制精度和响应速度,削弱了水泵和散热风扇的强耦合作用,流量跟随电流控制策略能够满足PEMFC系统对温度控制的要求。  相似文献   

16.
The concepts of thermal radiation heat transfer are not tangible for many students. Experiments relied on various parameters can clarify the concepts of this mode of heat transfer.A lab-scale set up is described to study the thermal radiation heat transfer experiments. An electrical circuit of the thermopile sensor is designed and manufactured to provide experimental data.The validity of Inverse Square, Stefan–Boltzmann, and Kirchhoff Laws are investigated experimentally in the setup. Results indicate that, it is necessary to consider temperature shifts in the thermopile cold junction which is a potential source of error. Therefore, the output voltage, corresponding to the sensor temperature, should be noted upon each measurement.Moreover, during the experiment, thermopile characteristics which affected the recorded data are reported. Wide angle of view and spectral response of the thermopile are found to be the main source of errors.Finally, in order to decrease errors, some suggestions as the feedback of students experiments and comments, are proposed to improve both the methods and the instruments.  相似文献   

17.
18.
介绍了以农林废弃物为主要燃料的生物质直燃循环流化床锅炉。对生物质循环流化床锅炉进行了额定、常用及最大负荷下的热效率测试实验,并对其热效率进行了修正。结果表明:锅炉热损失主要来自排烟热损失q4和固体未完全燃烧热损失q4;对进风温度、给水温度、燃料特性进行了修正,在12,13.5,15MW工况下修正后的热锅炉效率分别为87.57%,88。77%和88.72%。  相似文献   

19.
Autothermal reforming (ATR) is one of the leading methods for hydrogen production from hydrocarbons. Liquefied petroleum gas, with propane as the main component, is a promising fuel for on-board hydrogen producing systems in fuel cell vehicles and for domestic fuel cell power generation devices. In this article, propane ATR process is studied and operation conditions are optimized with PRO/Ⅱ from SIMSCI for proton exchange membrane fuel cell application. In the ATR system including water gas shift and preferential oxidation, heat in the hot streams and cold streams is controlled to be in balance. Different operation conditions are studied and drawn in contour plots. The region for ATR reforming with the highest efficiency can thus be identified. One operation point was chosen with the following process parameters: feed temperature for the ATR reactor is 425℃, steam to carbon ratio S/C is 2.08, air stoichiometry is 0.256. Thermal efficiency for the integrated system is calculated to be as high as 84.0 % with 38.27 % H2 and 3.2μl·L^-1 CO in the product gas.  相似文献   

20.
新型蜂巢式液冷动力电池模块传热特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了维持动力电池的性能、延长其使用寿命,应使电池模块工作过程中的温度和温差维持在适宜的范围之内。为此,提出一种新型蜂巢式液冷动力电池模块,该结构内部设有进/出口导流板且电池呈蜂巢式分布,冷却液体与电池呈360°间接接触,极大强化了换热效果。在单体电池热特性数值模拟与试验验证的基础上,通过计算流体力学平台建立新型蜂巢式液冷电池模块模型,研究了电池模块的热行为,分析了冷却液流量、冷却液温度对电池模块传热性能的影响。结果表明:(1)增加冷却液流量可显著降低电池模块最高温度,改善温度均匀性,当冷却液流量增加到1.5 L/min之后,电池模块最高温度及最大温差趋于稳定;(2)冷却液温度的降低可显著降低电池模块中最高温度,但在一定程度上恶化了模块中的温度均匀性;(3)冷却液流量和温度对电池模块的加热特性影响显著。因此,采用液冷方式是必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号