首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, effects of the thermal annealing on the structural, electrical, and optical properties of Al-doped ZnO (ZnO:Al) thin films prepared by reactive radio-frequency sputtering were investigated. From the X-ray diffraction observations, the orientation of ZnO:Al films was found to be a c-axis in the hexagonal structure. The optical properties of the films were investigated by optical transmittance and spectroscopic ellipsometry characterization. Based on Tauc–Lorentz model, the optical constants of ZnO:Al films were extracted in the photon energy ranging from 1.0 to 4.5 eV. Our result showed that the refractive index and extinction coefficient of the films changed consistently with annealing temperature.  相似文献   

2.
Nb-doped ZnO films with (002) orientation have been grown on glass substrates by rf magnetron sputtering followed by vacuum annealing at 400°C for 3 h. The microstructures and surface figures of the Nbdoped ZnO films were investigated with X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. And its optical and electrical properties were measured at room temperature using a four-point probe technique and 756-type spectrophotometer, respectively. X-ray diffraction (XRD) revealed that the films are highly textured along the c axis and perpendicular to the surface of the substrate. After annealing at 400°C for 180 min under vacuum, transmittance of about 90% in visible region for Nb doped ZnO films was confirmed by the optical transmission spectra, and the low resistivity of 5·47 × 10−3 Ω·cm was obtained.  相似文献   

3.
A series of sol–gel derived Al-doped ZnO (AZO) thin films with rapid thermal annealing process at low temperature were studied to examine the influence of annealing temperature and the Al doping concentration on their microstructure, electrical and optical transport properties. Crystalline AZO thin films were obtained following an annealing process at temperatures between 400 and 600 °C for 10 min in argon gas ambient. AZO thin films with Al doping of 1 at% were oriented more preferentially along the (002) direction, and have larger grain size and lower electrical resistivity, while the highest average optical transmittances of 92% were observed in AZO films with Al doping of 2 at%. With the annealing temperature increasing from 400 to 600 °C, the grain size of AZO films increased, the optical transmittance became higher, and the electrical resistivity decreased to a lowest value of 1.2 × 10−4 Ω cm resulting from the increase of the carrier concentration and the mobility.  相似文献   

4.
Zinc oxide (ZnO) thin films have been prepared on silicon substrates by sol–gel spin coating technique with spinning speed of 3,000 rpm. The films were annealed at different temperatures from 200 to 500 °C and found that ZnO films exhibit different nanostructures at different annealing temperatures. The X-ray diffraction (XRD) results showed that the ZnO films convert from amorphous to polycrystalline phase after annealing at 400 °C. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on pre-cleaned silicon (100) substrates and electrical properties such as current versus voltage (I–V) and capacitance versus voltage (C–V) characteristics were studied. The electrical resistivity decreased with increasing annealing temperature. The oxide capacitance was measured at different annealing temperatures and different signal frequencies. The dielectric constant and the loss factor (tanδ) were increased with increase of annealing temperature.  相似文献   

5.
Nanocrystalline Zn1−x Ni x O (x = 0.00, 0.02, 0.04, 0.06, 0.08) powders were synthesized by a simple sol–gel autocombustion method using metal nitrates of zinc, nickel and glycine. Structural and optical properties of the Ni-doped ZnO samples annealed at 800 °C are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis using X-rays (EDAX), UV–visible spectroscopy and photoluminescence (PL). X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a hexagonal wurtzite structure and secondary phase (NiO) was observed with the sensitivity of XRD measurement with the increasing nickel concentration (x ≥ 0.04). The lattice constants of Ni-doped ZnO nanoparticles increase slightly when Ni2+ is doped into ZnO lattice. The optical absorption band edge of the nickel doped samples was observed above 387 nm (3.20 eV) along with well-defined absorbance peaks at around 439 (2.82 eV), 615(2.01 eV) and 655 nm (1.89 eV). PL measurements of Ni-doped samples illustrated the strong UV emission band at ~3.02 eV, weak blue emission bands at 2.82 and 2.75 eV, and a strong green emission band at 2.26 eV. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.  相似文献   

6.
Al-doped Fe3O4 nanoparticles were synthesized for the first time via the Composite-Hydroxide-Mediated (CHM) method from Fe3O4 and Al2O3 without using any capping agent. The synthesis technique was one-step and cost effective. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). Samples with a tunable size of 500–1500 nm, 200–800 nm, and 100–700 nm could be obtained by adjusting the reaction time and temperature. Magnetic property of the as-synthesized Al-doped Fe3O4 nanoparticles was investigated. Magnetic hysteresis loops measured in the field range of −10 kOe<H<10 kOe, indicated the ferromagnetic behavior with coercivity (H c) of 470 and 110 Oe and remanence magnetization (M r) of 13 and 6.4 emu/g at the temperature of 5 and 300 K, respectively. The saturation intensity (M s) was 46.1 emu/g at 5 K, while it was about 43.6 emu/g at 300 K.  相似文献   

7.
Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.  相似文献   

8.
Aluminum doped zinc oxide (AZO) polycrystalline thin films were prepared by sol-gel dip-coating process on optical glass substrates. Zinc acetate solutions of 0.5 M in isopropanol stabilized by diethanolamine and doped with a concentrated solution of aluminum nitrate in ethanol were used. The content of aluminum in the sol was varied from 1 to 3 at.%. Crystalline ZnO thin films were obtained following an annealing process at temperatures between 300 °C and 500 °C for 1 h. The coatings have been characterized by X-ray diffraction, UV-Visible spectrophotometry, scanning electron microscopy, and electrical resistance measurement. The ZnO:Al thin films are transparent (∼ 90%) in near ultraviolet and visible regions. With the annealing temperature increasing from 300 °C to 500 °C, the film was oriented more preferentially along the (0 0 2) direction, the grain size of the film increased, the transmittance also became higher and the electrical resistivity decreased. The X-ray diffraction analysis revealed single-phase ZnO hexagonal wurtzite structure. The best conductors were obtained for the AZO films containing 1 at.% of Al, annealed at 500 °C, 780 nm film thickness.  相似文献   

9.
ZnO nanorods with diameters ranging from 25 to 88 nm and with length up to 1 μm were obtained via citric acid-assisted annealing route. The sample was characterized by X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), Raman spectrometer, FTIR spectrophotometer, ultraviolet visible (UV–VIS) spectroscopy, and photoluminescence (PL) spectroscopy. It demonstrates that the sample is composed of ZnO with hexagonal structure and the ZnO nanorods are of excellent optical quality.  相似文献   

10.
Al-doped, zinc oxide (ZnO:Al) films with a 1.2 at.% Al concentration were deposited on p-type silicon wafers using a sol-gel dip coating technique to produce a ZnO:Al/p-Si heterojunction. Following deposition and subsequent drying processes, the films were annealed in vacuum at five different temperatures between 550 and 900 °C for 1 h. The resistivity of the films decreased with increasing annealing temperature, and an annealing temperature of 700 °C provided controlled current flow through the ZnO:Al/p-Si heterojunction up to 20 V. The ZnO:Al film deposited on a p-type silicon wafer with 1.2 at.% Al concentration was concluded to have the potential for use in electronic devices as a diode after annealing at 700 °C.  相似文献   

11.
M. Nirmala  A. Anukaliani 《Materials Letters》2011,65(17-18):2645-2648
Antibacterial activity of Transition metals (Mn, Co) doped ZnO nanopowders prepared by a DC thermal plasma method against Escherichia coli and Staphylococcus aureus are investigated. The phase and morphology studies have been carried out by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. All the samples of the present investigation are found to have hexagonal wurtzite structure and crystallite sizes are found to vary from 25 nm to 30 nm. Our bacteriological study showed the enhanced antibacterial activity of transition metals doped ZnO nanoparticles than undoped ZnO indicating the great potential of ZnO nanoparticles in relevant clinical and biomedical applications.  相似文献   

12.
Aluminum-doped zinc oxide (ZnO:Al) thin films (t = 68–138 nm) were prepared by thermal oxidation in air flow, at 720 K, of the multilayered metallic Zn/Al thin stacks deposited in vacuum onto glass substrates by physical vapor deposition. The effect of Al content (3.7–8.2 at.%) on the structural (crystallinity, texture, stress, surface morphology) and optical (transmittance, absorbance, energy band gap) characteristics of doped ZnO thin films was investigated. The X-ray diffraction spectra revealed that the Al-doped ZnO films have a hexagonal (wurtzite) structure with preferential orientation with c-axis perpendicular to the substrate surface. A tensile residual stress increasing with Al content was observed. The films showed a high transmittance (about 90%) in the visible and NIR regions. The optical band gap value was found to decrease with Al content from 3.22 eV to 3.18 eV. The results are discussed in correlation with structural characteristics and Al content in the films.  相似文献   

13.
Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 Å for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving the quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.  相似文献   

14.
A series of Al-doped ZnO (AZO) thin films deposited by nonreactive DC magnetron sputtering at room temperature following rapid thermal annealing was studied to examine the influence of these Al doping concentration, sputtering power and annealing temperature on their microstructure, electrical and optical transport properties. AZO thin films with Al dopant of 3 wt% were oriented more preferentially along the (002) direction, bigger grain size and lower electrical resistivity The resistivity of AZO films decreases with the increase of Al content from 1 to 3 wt%, sputtering power from 60 to 100 W and the annealing temperature from 50 to 250 °C. Sputtering power and annealing had some effect on the average transmittance of AZO thin films. For AZO thin films with Al doping level of 3 wt%, the lowest electrical resistivity of 5.3 × 10−4 Ω cm and the highest optical transmittance of 88.7% could gain when the sputtering power was 100 W and the annealing temperature was 200 °C or above.  相似文献   

15.
Processable poly(m-aminophenol) (PmAP) was synthesized using ammonium persulfate oxidant in 0.6 M sodium hydroxide solution at room temperature. Then, in situ PmAP–silver nanocomposite film was obtained by casting PmAP film from dimethyl sulfoxide with silver hydroxide ammonia mixture at 140 °C. The nanocomposite film was doped with hydrochloric acid (HCl) by general solution doping technique. The undoped and HCl-doped films were characterized by ultraviolet visible spectroscopy, Fourier transformed Infrared spectroscopy, transmittance electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction analysis. Spectroscopic characterizations confirmed that the PmAP was doped by silver nanoparticles and it was further doped by HCl used. So, the synthesized PmAP–silver nanocomposite showed a conductivity of 1.01 × 10−6 S/cm, which was increased to 3.27 × 10−4 S/cm after HCl doping. The well dispersed silver nanoparticles with average size 130–150 nm was observed by SEM and TEM analysis. Unlike conventional ammonia sensor here, the resistivity of the nanocomposite film was decreased on exposure to ammonia gas and the sensing properties of the HCl-doped nanocomposite films were also reproducible. It can be seen that the % response of doped nanocomposite was unchanged while, the response time was decreased with increasing ammonia vapor concentrations in air. The ammonia-sensing characteristics of the HCl-doped nanocomposite film was explained on the basis of a proposed mechanism.  相似文献   

16.
Bi doped ZnO films with (100) orientation have been grown on glass substrates by rf magnetron sputtering followed by vacuum annealing at 400 °C for 3 h. X-ray diffraction (XRD) revealed that the film first growth along (002) direction was suppressed to form (100) plane with c-axis parallel to the substrate. After annealed at 400 °C for 3 h under vacuum, transmittance about 80% in visible region and near 100% absorption in UV region for (100) oriented Bi doped ZnO films are confirmed by the optical transmission spectra. The optical band gap is evaluated to be around 3.13 eV which is lower than (002) oriented films.  相似文献   

17.
Tb3+-doped zinc oxide was prepared by the co-precipitation method. The as-dried sample was annealed at 80, 300, 500, 700, and 1000 °C. Rietveld analysis of the X-ray diffraction patterns of the samples annealed up to 300 °C showed that all the Tb3+ ions were entered in the ZnO lattice. But a fraction of Tb3+ ions could not enter in the ZnO lattice above 300 °C and this fraction increases with the increase of annealing temperature. The crystallite size and the internal strain due to substitution of bigger size R-ions in the ZnO lattice of the samples were estimated by using the Hall–Williamson plot. Results extracted from high resolution transmission electron microscopy are in agreement with those obtained from the XRD analysis. Magnetic susceptibility (χ) in the range of 300–14 K and magnetization as a function of magnetic field in the range of 300–5 K of the sample annealed at 80 °C were measured by Faraday and SQUID magnetometers, respectively. Values of χ in the paramagnetic region were analyzed by invoking the crystal field interaction of the Tb3+ ions with its diamagnetic neighbors. Paramagnetic to ferromagnetic phase transition has been observed at low temperature and the saturation magnetization measured at 5 K is quite high compared to the pristine sample.  相似文献   

18.
The effect of lanthanum sol–gel coatings was studied in order to improve the alumina scale adherence during the model Fe–20Cr–5Al alloy oxidation, at 1100 °C, in air. Various sol–gel coating procedures were applied. Argon annealing of the lanthanum sol–gel coating was tested at temperatures ranging between 600 and 1000 °C. The coating crystallographic nature was characterized by X-ray diffraction (XRD) depending on the annealing temperature. The oxidation process has been examined at 1100 °C by in situ XRD on blank Fe–20Cr–5Al, sol–gel coated and argon-annealed specimens. This study shows that the coating argon annealing at 1000 °C leads to the preferential formation of LaAlO3 instead of La2O3. This coating procedure leads to an alumina scale formation showing the best adherence under thermal cycling conditions at 1100 °C.  相似文献   

19.
Synthesis of Er-doped ZnO nanoparticle/organic hybrid from metal-organics   总被引:1,自引:0,他引:1  
An Er-doped ZnO nanoparticle/organic hybrid was synthesized in situ from zinc acrylate (ZA) and erbium acetate (EA) using methylhydrazine. Nano-sized Er-doped ZnO particles were formed in an organic matrix by hydrolysis and polymerization of ZA–EA at 80 °C. The crystallinity of the Er-doped ZnO particles in the hybrid was dependent upon the hydrolysis temperature and water amount. Analysis by transmission electron microscopy and energy dispersive X-ray analyzer revealed that crystalline ZnO nanoparticles doped with Er were dispersed in the organic matrix. The hybrid film sandwiched between fused silica plates was highly transparent. The Er-doped ZnO particle/organic hybrid showed a photoluminescence peak at 0.81 eV (1.54 μm) attributed to the transition of Er3+ ions.  相似文献   

20.
The effect of vacuum annealing temperature on the chemical and phase compositions, particle size, and lattice strain of nanocrystalline tungsten carbide (WC) powders with a particle size from 20 to 60 nm has been studied by X-ray diffraction and electron microscopy. The results demonstrate that vacuum annealing of WC nanopowders at t ann ≤ 1400°C is accompanied by a marked decrease in carbon content and changes in phase composition due to carbon desorption from the surface of the powder as a result of the interaction of carbon with oxygen impurities. In addition, annealing leads to an increase in particle size due to coalescence of aggregated nanoparticles and reduces the lattice strain of the powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号