首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultimate objective of the project was to investigate the relationship between microemulsion phase behavior and detergency for oily soils. In this study, surfactant phase behavior was evaluated for hexadecane and motor oil as model oily soils. Producing microemulsions with these oils is particularly challenging because of their large hydrophobic character. To produce the desired phase behavior we included three surfactants with a wide range of hydrophilic/lipophilic character: alkyl diphenyl oxide disulfonate (highly hydrophilic), dioctyl sodium sulfosuccinate (intermediate character), and sorbitan monooleate (highly hydrophobic). This mixed surfactant was able to bridge the hydrophilic/lipophilic gap between the water and the oil phases, producing microemulsions with substantial solubilization and ultralow interfacial tension. The effects of surfactant composition, temperature, and salinity on system performance were investigated. The transition of microemulsion phases could be observed for both systems with hexadecane and motor oil. In addition, the use of surfactant mixtures containing both anionic and nonionic surfactants leads to systems that are robust with respect to temperature compared to single-surfactant systems. Under conditions corresponding to “supersolubilization”, the solubilization parameters and oil/microemulsion interfacial tensions are not substantially worse than at optimal condition for a middle-phase system, so a middle-phase microemulsion is not necessary to attain quite low interfacial tensions. A potential drawback of the formulations developed here is the fairly high salinity (e.g., 5 wt% NaCl) needed to attain optimal middle-phase systems. The correlation between interfacial tension and solubilization follows the trend predicted by the Chun-Huh equation.  相似文献   

2.
The enzyme amylase is one of the hydrolyzing enzymes used in detergent formulation in order to remove soil based on polysaccharides. The effectiveness of the enzyme depends on its compatibility with other ingredients of the formulation. Among the studied additives, comprising anionic surfactants sodium dodecyl hydrogen sulfate (SDS) and dioctyl sodium sulfosuccinate, the cationic surfactant cetyl trimethyl ammonium bromide (CTAB), nonionic surfactants polyoxyethylene sorbitan monooleate and polyoxyethylene octyl phenyl ether, carboxy methyl cellulose and sodium sulfate, only the anionic surfactant SDS and cationic surfactant CTAB showed catalytic enhancement of α-amylase. The kinetic parameters, K m and k cat, showed an increase in catalytic activity in the micellar pseudophase. The decrease in optimum temperature from 55 to 30 °C and the shift in optimum pH from 5.5 to 7 on the addition of SDS and CTAB for the hydrolysis of starch are very favorable to enhance the washing characteristics.  相似文献   

3.
Water-in-oil microemulsions were produced by mixing different combinations of the cationic surfactants cetyltrimethylammonium bromide and cetylpyridinium chloride,n-alkanes (C5–C7) and benzene as oils,n-alkylamines (C6 and C8) and cyclohexylamine as cosurfactants with water. The influence of chainlength of the alkanes and amines on water solubilization behavior of these systems has been investigated. The solubilization of water in a particular microemulsion is governed by the partitioning of amines among oil, water and interfacial phases, depending on the chainlength and nature of oil and amine, and their interaction with the surfactant. The molar ratio of amine to surfactant at the droplet interface increased with the length of the oil chain. The free energy changes accompanying cosurfactant adsorption at the interface have also been computed.  相似文献   

4.
The detergency profiles of sodium salt α-sulfonated methyl esters derived from palm stearin (α-SMEPS) and polyoxyethylene (20) sorbitan monoesters (POESE) in mixed micelle systems were evaluated as a function of the weight ratios of α-SMEPS/POESE [polyoxyethylene (20) sorbitan monolaurate (12), polyoxyethylene (20) sorbitan monostearate (18∶0), and polyoxyethylene (20) sorbitan monooleate (18∶1)] at different water hardness values (5.12, 51.2, and 512.0 ppm CaCO3) and temperatures (20, 30, 45, and 65°C), respectively. All the mixtures of α-SMEPS/POESE (12, 18∶0, and 18∶1) systems exhibited a synergistic effect at 65°C in the absence of hardness. This was evaluated by measuring the percentage of soil removed. The systems showed an increase in detergency with both the temperature and water hardness. Maximal detergency was observed with 5.12 ppm CaCO3 in the mixed surfactant solution.  相似文献   

5.
In part I of this series (J. Surfact. Deterg. 6, 191–203, 2003), the mixed surfactant system of sodium dioctyl sulfosuccinate (AOT), alkyl diphenyl oxide disulfonate (ADPODS) and sorbitan monooleate (Span 80) was shown to form Winsor type I and type III microemulsions with hexadecane and motor oil. In addition, high solubilization and low interfacial tension were obtained between the oils and surfactant solutions both in the supersolubilization region (Winsor type I system close to type III system) and at optimal conditions in a type III system. In the present study, this mixed surfactant system was applied to remove oily soil from fabric (a polyester/cotton blend), and detergency results were correlated to phase behavior. Dynamic interfacial tensions were also measured between the oils and washing solutions. In the supersolubilization and in the middle-phase regions (type III), much better detergency performance was found for both hexadecane and motor oil removal than that with a commercial liquid detergent product. In addition, the detergency performance of our system at low temperature (25°C) was close to that obtained at high temperature (55°C), consistent with the temperature robustness of the microemulsion phase behavior of this system.  相似文献   

6.
In spite of the increasing interest in cold temperature detergency of vegetable oils and fats, very limited research has been published on this topic. Extended surfactants have recently been shown to produce very promising detergency with vegetable oils at ambient temperature. However, the excessive salinity requirement (4–14 %) for these surfactants has limited their use in practical applications. In this work, we investigated the mixture of a linear C10–18PO–2EO–NaSO4 extended surfactant and a hydrophobic twin‐tailed sodium dioctyl sulfosuccinate surfactant for cold temperature detergency of vegetable oils and semi‐solid fats. Four vegetable oils of varying melting points (from ?10 to 28 °C) were studied, these were canola, jojoba, coconut and palm kernel oils. Anionic surfactant mixtures showed synergism in detergency performance compared to single surfactant systems. At temperatures above the melting point, greater than 90 % detergency was achieved at 0.5 % NaCl. While detergency performance decreased at temperatures below the melting point, it was still superior to that of a commercial detergent (up to 80 vs. 40 %). Further, results show that the experimental microemulsion phase behaviors correlated very well with predictions from the hydrophilic–lipophilic deviation concept.  相似文献   

7.
The interaction of mixtures of sodium dodecyl sulfate (SDS) and oxyethylenated nonylphenol (30 mol of ethylene oxide) [NP(EO)30] with phosphatidylcholine liposomes was investigated. Permeability alterations were detected as a change in 5(6)-carboxyfluorescein (CF) released from the interior of vesicles, and bilayer solubilization was measured as a decrease in the static light scattered by liposome suspensions. Three parameters were described as the effective surfactant/lipid molar ratios (Re) at which the surfactant system: (i) resulted in 50% CF release (Re 50%CF); (ii) saturated the liposomes (Re SAT); (iii) led to complete solubilization of these structures (Re SOL). The corresponding surfactant partition coefficients (K 50%CF, K SAT, and K SOL) were determined from these parameters. The free surfactant concentrations S W were lower than the mixed surfactant critical micellar concentration at subsolubilizing levels, whereas they remained similar to these values during saturation and solubilization of bilayers. Although the Re values increased linearly as the mole fraction of the SDS rose (X SDS), the K parameters showed maximum values at X SDS 0.6 for K 50%CF and approximately at X SDS 0.2 for K SAT and K SOL, respectively. Thus, the lower the surfactant contribution in the surfactant/lipid system, the higher the X SDS at which the maximum bilayer/water partitioning of added mixed surfactant systems occurred. As a consequence, the influence of SDS in this partition appears to be more significant at the sublytic level (monomeric effect), whereas the influence of NP(EO)30 seems to be greater during saturation and solubilization of liposomes via formation of mixed micelles.  相似文献   

8.
This research evaluated middle-phase microemulsion formation by varying the mole ratio of anionic and cationic surfactants in mixtures with four different oils (trichloroethylene, n-hexane, limonene, and n-hexadecane). Mixtures of a double-tailed anionic surfactant (sodium dihexyl sulfosuccinate, SDHS) and an unbalanced-tail (i.e., doubletailed with tails of different length) cationic surfactant (benzethonium chloride, BCl) were able to form microemulsions without alcohol addition. The amount of NaCl required to form the middle-phase microemulsion decreased dramatically as an equimolar anionic-cationic surfactant mixture was approached. Although the mixture of anionic and cationic surfactants demonstrated a higher critical microemulsion concentration (cμc) compared to the anionic surfactant alone, the Winsor Type IV single-phase microemulsion started at lower surfactant concentrations for the anionic-cationic mixture than for the anionic surfactant alone. Under optimum middlephase microemulsion conditions, mixed anionic-cationic surfactant systems solubilized more oil than the anionic surfactant alone. Pretreatment detergency studies were conducted to test the capacity of these mixed surfactant systems to remove oil form fabrics. It was found that anionic-rich mixed surfactant formulations yielded the largest oil removal, followed by cationic-rich systems.  相似文献   

9.
Interfacial behavior, structural and thermodynamic parameters of a water/(surfactant+n-butanol)/n-heptane water-in-oil (w/o) microemulsion have been investigated using the dilution technique at different temperatures, and [water]/[surfactant] mole ratios. The cationic surfactants used were alkyltrimethyl ammonium bromides (CnTAB, n = 10, 14 and 16) while the nonionic surfactants were polyoxyethylene (20) sorbitan monoalkanoates (polysorbate), viz., palmitate (PS 40), stearate (PS 60) and oleate (PS 80). The distribution of cosurfactant between the oil–water interface and the bulk oil at the threshold level of stability, and the thermodynamics of transfer of the cosurfactant from the bulk oil to the interface were evaluated. Structural parameters such as the dimensions, population density and effective water pool radius of the dispersed water droplets in the oil phase and the interfacial population of the surfactant and cosurfactant have been evaluated in terms of the surfactant chain length.  相似文献   

10.
The solubilization and interaction of an azo-dye (methyl orange) with dodecyl trimethyl ammonium bromide and cationic gemini surfactants in the series of alkanediyl α,ω-bis[(dimethyl alkyl ammonium)bromide)] referred to as (m-s-m), m = 10, 12, 14 and s = 2, 3, 4 were investigated by means of UV–Vis spectroscopy. Aggregation with the anionic dye was reflected by a hypsochromic shift with a decrease in the intensity of the absorption band. The results also show a bathochromic shift followed by a sharp increase in the intensity of the maximum absorption band λmax after the critical micellar concentration (CMC). This indicates that the dye solubility increased with increasing surfactant concentration. It was also observed that the aggregation of surfactant and dye takes place at a surfactant concentration far below the CMC of the individual surfactant. The effects of the chain length as well as the spacer length of gemini surfactants on the critical aggregation concentration and CMC were also examined. Moreover, the partition coefficients between the bulk water and surfactant micelles K S and K X as well as the Gibbs energies of distribution of dye between the bulk water and surfactant micelles were determined using the pseudo-phase model. The effect of the hydrophobic chain length and spacer of gemini surfactants on the distribution parameters is also reported.  相似文献   

11.
A method was investigated for determining the critical micelle concentration (CMC) by the shift of absorption maxima when an organic compound (I) with ultraviolet absorption was added to an aqueous solution of a surfactant. When I was added to the surfactant solution at higher concentrations (above the CMC), λmax of I approached the value inn-octane, since I was solubilized in the hydrocarbon atmosphere of the inner part of the surfactant micelle. At lower concentrations (below the CMC), however, I was present in the water phase and λmax approached the value in water. The curve of λmax vs. surfactant concentration declined from the high concentration values as the CMC was approached and at the CMC, the curve broke upward sharply. Then, it rose for some time and approached the value in water. N,N′-diethylaniline was used because it exhibited larger shifts of λmax. The standard amount used was 0.002 ml/3–10 ml of aqueous solution of the surfactant. The CMC values obtained agreed with those obtained by the electric conductivity method, dye adsorption method and light scattering method, for surfactants such as tetradecyldimethylbenzylammonium chloride, sodium dodecyl sulfate and polyoxyethylene cetyl ether.  相似文献   

12.
The polarity of water solubilized in the interior of non‐ionic surfactant reverse micellar systems has been investigated using optical probes. Small amounts of water incorporated on the inside of various reverse micellar systems, polyoxyethylene sorbitan trioleate (Tween‐85)/isopropyl alcohol/n‐hexane mixture and polyoxyethylene tert‐octylphenyl ether (TX‐100)/cyclohexane, were found to have low polarity compared with bulk water. The polarity of water in both Tween‐85 and TX‐100 reverse micellar systems corresponded to that of methanol. The activity of the proteases α‐chymotrypsin and subtilisin in Tween‐85 and TX‐100 reverse micellar systems has also been investigated. It was found that the amounts of water in the reverse micellar system have a significant influence on the activity of enzymes. In the TX‐100 reverse micellar system, neither enzymes showed any activity. In contrast, the activity of enzymes in the Tween‐85 reverse micellar system was similar to that in the aqueous system and followed standard Michaelis–Menten kinetics. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Triglycerides and vegetable oils are amongst the most difficult oils to remove from fabrics due to their highly hydrophobic nature; this is all the more challenging as cold water detergency is pursued in the interest of energy efficiency. Recently, extended surfactants have produced very encouraging detergency performance at ambient temperature, especially at low surfactant concentration. However, the salinity requirement for extended surfactants was excessive (4–14%) and there is limited research on extended‐surfactant‐based microemulsions for cold water detergency (below 25 °C). Therefore, extended‐surfactant‐based microemulsions are introduced in this study for cold temperature detergency of vegetable oils with promising salinity and surfactant concentration. The overall goal of this study is to explore the optimized microemulsion formulations with low surfactant and salt concentration using extended surfactant for canola oil detergency at both 25 and 10 °C. It was found that microemulsion systems achieved good performances (higher than those of commercial detergents) corresponding to IFT value 0.1–1 mN/m with the surfactant concentration as low as 10 ppm and 4% NaCl at 25 °C, and as low as 250 ppm and 0.1% (1000 ppm) NaCl at 10 °C. In addition, microemulsion systems were investigated with a different salt (CaCl2, or water hardness, versus NaCl) at 10 °C, demonstrating that 0.025% CaCl2 (250 ppm) can produce good detergency; this is in the hardness range of natural water. These results provide qualitative guidance for microemulsion formulations of vegetable oil detergency and for future design of energy‐efficient microemulsion systems.  相似文献   

14.
Micellar and interfacial properties of mixed surfactant systems comprising benzalkonium chloride, a cationic surfactant and nonionic polyoxyethylene alkyl ether surfactants (POE: C10E7, C10E8, C10E9, C10E10) have been investigated by surface tension, fluorescence and dynamic light scattering techniques. Critical micelle concentration (CMC) for different mixing mole fractions has been investigated by surface tension and fluorescence measurements. Ideal CMC, mixed micellar composition (X 1 m , X 1 σ ), interaction parameters for mixed micelles (β m) and adsorption monolayer (β σ ), surface excess concentration (Гmax), minimum area per molecule (A min) and related thermodynamic properties have also been determined. Lowering of the CMC and negative interaction parameter values indicate synergism in the mixed micelle and monolayer formed, whereas, thermodynamic parameters evaluated for the proposed mixed systems indicate stability of the resulting micelles and monolayer. Micellar aggregation number (N agg) and hydrodynamic diameter (D h) computed from fluorescence and dynamic light scattering measurements respectively illustrate micellar growth in the mixed state. Results obtained for the proposed mixed systems can be helpful in designing smart materials for industrial surfactant based formulations.  相似文献   

15.
The present study investigates the effect of tetraethyl ammonium tetrafluoroborate [TEA(BF4)] ionic liquid (IL) on the cloud point (CP) of the following nonionic surfactants in aqueous solution: ter‐octylphenol ethoxylates with 9.5 and 4.5 ethylene oxide groups (abbreviated TOPEO9.5 and TOPEO4.5, respectively), cetyl alcohol ethoxylate with 10 ethylene oxide groups (C16EO10), and sorbitan monolaurate and monooleate both with 20 ethylene oxide groups (SMLEO20 and SMOEO20, respectively) in aqueous solutions. The thermodynamic parameters of these mixtures were calculated at different IL concentrations. The CP of most of the tested nonionic surfactants increased with the increment of IL concentrations with the exception of C16EO10 for which it decreased. The solubility of a nonionic surfactant containing polyoxyethylene (POE) hydrophilic chain was considered as maximum at the CP, hence the thermodynamic parameters were calculated at the same temperature. The results showed that the standard Gibbs free energy (?GCP0), the enthalpy (?HCP0) and the entropy (?SCP0) of the clouding phenomenon were found to be positive for ethoxylated octylphenol and sorbitan esters, whereas ?HCP0 and ?SCP0 were found to be negative for C16EO10. It was found that the overall clouding process is endothermic for ethoxylated octylphenol and sorbitan esters and exothermic for C16EO10. For all the studied systems, ?HCP0 > T?SCP0 indicated that the process of clouding is guided by both enthalpy and entropy. The positive value of standard Gibbs free energy (?GCP0) for the all mixed systems indicated that the process proceeds non‐spontaneously. The ?GCP0 decreased with increasing IL concentration for all the nonionic surfactants; however, it decreased with increasing surfactant concentration for TOPEO9.5, C16EO10, and SMOEO20, and increased with increasing surfactant concentration for TOPEO9.5 and SMLEO20.  相似文献   

16.
Silicalite-1 particles with minimum twinning have been synthesized inside the polar core of non-ionic surfactant/co-surfactant-stabilized water-in-oil (w/o) type emulsions at 150° ± 1 °C within a short reaction time of 5 h. The non-ionic surfactants of varying hydrophilic–lipophilic balance (HLB) values, i.e. sorbitan monooleate (Span 80, HLB: 4.3), sorbitan monolaurate (Span 20, HLB: 8.6), polyoxyethylene (4) lauryl ether (Brij 30, HLB: 9.7) and polyoxyethylene sorbitan monooleate (Tween 80, HLB: 15), the cationic surfactant, i.e. cetyl trimethyl ammonium bromide (CTAB), surfactant concentration, co-surfactant, synthesis temperature and time have been found to play significant role in controlling size and characteristics of Silicalite-1. It has been observed that the crystallinity and size of Silicalite-1 can be tailored by adjusting the interactions between the polar surfactant head groups at the w/o interface and the growing crystallographic surfaces (or silicate/TPA ions) in the aqueous medium of the emulsion.  相似文献   

17.
Alcohol-free diphenyl oxide disulfonate middle-phase microemulsion systems   总被引:2,自引:0,他引:2  
Diphenyl oxide disulfonate (DPDS) surfactants were successfully used to formulate Winsor Type III middlephase microemulsion systems with tetrachloroethylene (PCE) and decane. To our knowledge this is the first time that monochain DPDS surfactant phenyloxide monohexadecyl disulfonate surfactant (C16MADS) and commercially available DOWFAX 8390 were found to form middle-phase microemulsion systems with oils. Hydrophobic dioctyl sodium sulfosuccinate (Aerosol OT) was also used as a cosurfactant to lower the systems' hydropholic-liphophilic balance. Two organic acids (hydrophobic octanoic acid and hydrophilic l-tartaric acid) were used in place of the alcohol to formulate middle-phase microemulsion. The middle-phase microemulsion systems dramatically increased organic solubility when compared to micellar DPDS surfactant systems. Winsor Type I systems near the Type I–III boundary produced “super” solubilization for hydrophobic oils. Findings from this study enable us to improve DPDS solubilization enhancement of hydrophobic compounds.  相似文献   

18.
Inspired by the concept of lipophilic and hydrophilic linkers, extended surfactants have been proposed as highly desirable candidates for the formulation of microemulsions with high solubilization capacity and ultralow interfacial tension (IFT), especially for triglyceride oils. The defining characteristic of an extended surfactant is the presence of one or more intermediate-polarity groups between the hydrophilic head and the hydrophobic tail. Currently only limited information exists on extended surfactants; such knowledge is especially relevant for cleaning and separation applications where the cost of the surfactant and environmental regulations prohibit the use of concentrated surfactant solutions. In this work, we examine surfactant formulations for a wide range of oils using dilute solutions of the extended surfactant classes sodium alkyl polypropyleneoxide sulfate (R-(PO) x −SO4Na), and sodium alkyl polypropyleneoxide-polyethyleneoxide sulfate (R-(PO) y -(EO) z −SO4Na). The IFT of these systems was measured as a function of electrolyte and surfactant concentration for polar and nonpolar oils. The results show that these extended surfactant systems have low critical micelle concentrations (CMC) and critical microemulsion concentrations (CμC) compared with other surfactants. We also found that the unique structure of these extended surfactants allows them to achieve ultralow IFT with a wide range of oils, including highly hydrophobic oils (e.g., hexadecane), triolein, and vegetable oils, using only ppm levels of these extended surfactants. It was also found that the introduction of additional PO and EO groups in the extended surfactant yielded lower IFT and lower optimum salinity, both of which are desirable in most formulations. Based on the optimum formulation conditions, it was found that the triolein sample used in these experiments behaved as a very polar oil, and all other vegetable oils displayed very hydrophobic behavior. This unexpected triolein behavior is suspected to be due to uncharacterized impurities in the triolein sample, and will be further evaluated in future research.  相似文献   

19.
In this study, effects of Tween 80 (polyoxyethylene sorbitan monooleate) as a variable hydrophilic surfactant additive on morphology and permeability of flat sheet polyethersulfone (PES) membranes prepared from PES/polyethylene glycol (PEG)/n-methyl-2-pyrrolidone (NMP) system via phase inversion induced by immersion precipitation in water coagulation bath were investigated. Cross-sectional morphology of the prepared membranes was studied by scanning electron microscopy (SEM). Permeation performance of the prepared membranes was evaluated in terms of pure water permeability (LP), water content, porosity, hydraulic permeability and thickness of the prepared membranes. It was found out that little addition of Tween 80 to the casting solution increases water content and porosity of the membrane support layer and enhances pure water permeability through the membranes.  相似文献   

20.
A straightforward synthetic strategy to an anionic gemini surfactant having both N-acylamide and carboxylate groups in a molecule has been demonstrated. The surface properties of the anionic gemini surfactant, such as CMC (critical micelle concentration), C20 (the concentration required to reduce the surface tension of the solvent by 20 mN/m), γ CMC (the surface tension at the CMC), CMC (the surface pressure at the CMC), Γ max (the maximum surface excess concentration at the air/aqueous solution interface), A min (the minimum area per surfactant molecule at the air/water interface), and the CMC/C20 ratio (a measure of the tendency to form micelles relative to adsorbtion at the air/water interface), have been studied. The influence of the different concentrations of NaCl on the surface properties of the gemini surfactant has been discussed. The results have shown that the CMC values decreased with an increase in the concentration of NaCl indicating that the Na+ preferentially adsorbs onto the surface of the charged aggregate and facilitates the aggregate growth by suppressing the main impediment of electrostatic repulsion among head groups. Additionally, the values of Γ max are always higher in salt solutions as compared to those in pure water due to their salting out effect. The larger pC20 value indicates that the surfactant adsorbs more efficiently at the air/water interface and reduces surface tension more efficiently. In addition, the geminis in water show little or no break in their specific conductance versus surfactant molar concentration plots. This is attributable to protonation of the carboxylate group and strong Na+ release during micellization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号