首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared (Ln2 ? x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm) pyrochlore-like solid solutions with interstitial oxide ion conduction and Ln2(Zr2 ? x Ln x )O7 ? δ (Ln = Nd, Sm) pyrochlore-like solid solutions with vacancy-mediated oxide ion conduction in the symmetric systems Nd2O3-ZrO2 (NdZrO) and Sm2O3-ZrO2 (SmZrO). We have studied their structure, microstructure, and transport properties and determined the excess oxygen content of the (Sm2 ? x Zr x )Zr2O7 + x/2 (x = 0.2) material using thermal analysis and mass spectrometry in a reducing atmosphere (H2/Ar-He). The Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions have almost identical maximum oxygen vacancy and interstitial conductivities: (3–4) × 10?3 S/cm at 750°C. The lower oxygen vacancy conductivity of the Ln2(Zr2 ? x Ln x )O7 ? δ (Ln = Nd, Sm; 0 < x ≤ 0.3) solid solutions is due to the sharp decrease in it as a result of defect association processes, whereas the interstitial oxide ion conductivity of the (Ln2 ? x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm; 0.2 ≤ x < 0.48) pyrochlore-like solid solutions is essentially constant in a broad range of Ln2O3 concentrations.  相似文献   

2.
(Nd1−xScx)2Zr2O7 (x = 0, 0.1, 0.3, 0.5, 0.7) compounds were synthesized by solid state reaction at 1700 °C for 10 h, and characterized by XRD, Raman spectroscopy, SEM and high-temperature dilatometer. Nd2Zr2O7 exhibited pyrochlore phase, and its lattice parameter increased after Sc2O3 doping, which could be attributed to the presence of Sc3+ interstitial ions in pyrochlore lattice. Fluorite phase formed in the doped Nd2Zr2O7, and (Nd0.3Sc0.7)2Zr2O7 exhibited pure fluorite phase. The thermal expansion coefficient (TEC) of Nd2Zr2O7 was significantly enhanced by 10 mol% Sc2O3 doping, but higher Sc2O3 doping decreased the TEC. The reduced crystal energy due to the presence of Sc3+ interstitial ions could cause the initial increase in the TEC, and the formation of fluorite phase might contribute to the reduced TEC. Considering the alleviation of the thermal expansion mismatch stress for the high-temperature applications of Nd2Zr2O7, Sc2O3 was an excellent dopant and there existed an optimal Sc2O3 content for the optimization design of compound compositions.  相似文献   

3.
The progress in wireless communications and information access has demanded the use of electronic ceramics exhibiting desired properties. To further our understanding of these properties, compounds in the Ln2Ti2-2xM2xO7 (Ln=Gd, Er; M=Zr, Sn, Si) systems were synthesized by ceramic methods and characterized by powder X-ray diffraction. The ZrO2-doped Gd2Ti2−2xZr2xO7 compounds adopt the pyrochlore structure type and form a complete solid solution. Er2Ti2−2xZr2xO7 forms a pyrochlore solid solution for x<0.1. However, stoichiometric Er2Zr2O7 does not form; instead Er4Zr3O12 forms a with defect fluorite structure. The Sn-doped Ln2Ti2−2xSn2xO7 (Ln=Gd, Er) compounds form complete solid solutions, and the Si compounds adopt the pyrochlore structure up to x=0.05. At ambient temperature, dielectric constants range from 10 to 61 for Er2Ti2−2xZr2xO7 and 16-31 for Gd2Ti2−2xZr2xO7 with low dielectric loss (1×10−3) at 1 GHz.  相似文献   

4.
Pure and Zr-doped barium titanate hafnate (BaHf0.1Ti0.9O3, short for BHT) ceramics were prepared by conventional solid state reaction method. The microstructures, dielectric and ferroelectric properties of BaHf0.1Ti0.9-x Zr x O3 (x = 0, 0.02, 0.04, 0.10) ceramics have been investigated. From the X-ray diffraction patterns it is indicated that Zr4+ ions have entered the unit cell maintaining the tetragonal perovskite structure of solid solution and the lattice constant of Zr-doped BHT ceramics increases with the increase of Zr content. There is an obvious difference between the grain shape of pure BHT ceramics and that of Zr-doped BHT ceramics. The temperature dependences of dielectric constant indicated that all of the three phase transition temperatures increase after doped zirconium. It is found that well-behaved hysteresis loops can be observed in pure and Zr-doped BHT ceramics. The remanent polarization (2P r) and the coercive electric field (2E C) of BaHf0.1Ti0.9-x Zr x O3 ceramics gradually decrease as the Zr content increases from 2 to 10 mol %.  相似文献   

5.
We report on the synthesis, microstructure and thermal expansion studies on Ca0·5?+?x/2Sr0·5?+?x/2Zr4P6???2x Si2x O24 (x = 0·00 to 1·00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures were in pure NZP phase up to x = 0·37. For x ≥ 0·5, in addition to NZP phase, ZrSiO4 and Ca2P2O7 form as secondary phases after sintering. The bulk thermal expansion behaviour of the members of this system was studied from 30 to 850 °C. The thermal expansion coefficient increases from a negative value to a positive value with the silicon substitution in place of phosphorous and a near zero thermal expansion was observed at x = 0·75. The amount of hysteresis between heating and cooling curves increases progressively from x = 0·00 to 0·37 and then decreases for x > 0·37. The results were analysed on the basis of formation of the silicon based glassy phase and increase in thermal expansion anisotropy with silicon substitution.  相似文献   

6.
The nanostructured Ce1−xZrxO2 solid solutions (x ≤ 0.2) have been successfully synthesized from CeCl3–ZrCl4–NaOH mixtures by mechanochemical processing as a gradual transformation, involving in-situ CeO2 and amorphous ZrO2 formation as intermediates. Solid solutions type-Ce1−xZrxO2 along with NaCl as diluent were obtained at different milling times, with a final composition of Ce0.8Zr0.2O2 after 5 h and 15 h under high and low energetic milling conditions, respectively. The NaCl formed during the mechanochemical reaction, which is eliminated by washing after calcination of the as-milled sample, allows to obtain a Ce0.8Zr0.2O2 solid solution with high surface area and nanometric grains. The nanostructured Ce0.8Zr0.2O2 solid solution shows good thermal stability after prolonged heating at 600 °C. However, the addition of an extra amount of diluent during mechanochemical reaction evidences a detrimental effect, avoiding the formation of solid solution or deteriorating the textural/microstructuctural characteristics of the obtained Ce1−xZrxO2 solid solution. Removal of NaCl previous to calcination improves notably the textural/microstructural characteristics of the Ce0.8Zr0.2O2 solid solution.  相似文献   

7.
We have synthesized CexZr1–xO2 solid solutions via the thermal decomposition of xerogels of different compositions prepared by drying appropriate hydrosols. The synthesized materials have been characterized by thermal analysis, X-ray diffraction, and Raman spectroscopy. The results demonstrate that the solid solutions are formed at relatively low temperatures (450–600°C). The CexZr1–xO2 samples with x = 0.5–0.9 consist of a cubic solid solution. At a lower CeO2 content (x = 0.2), the material consists of a mixture of cubic and tetragonal phases.  相似文献   

8.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

9.
Ca1-x Sr x Zr4P6O24 (O × 1.0) system which belongs to a new large family of low thermal expansion materials known as NZP or CTP, was synthesized by the solid state and the sol-gel methods. The conventional sol-gel method was modified by introducing a seeding step which resulted in significant improvement in the sintering characteristics and the microstructure of the sintered material. Sintering data were compared with those obtained by the powder mixing technique. Thermal expansion of the sintered samples was measured by classical dilatometry and by high-temperature X-ray diffractometry. It was found that CaZr4P6O24 (x= 0) and SrZr4P6O24 (x= 1) phases had opposite anisotropies in their respective axial thermal expansions. This behaviour led to the development of a crystalline solution composition of nearly zero expansion characteristic. Microstructures of the sintered specimens were examined by scanning electron microscopy.  相似文献   

10.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

11.
Nanocrystalline Pr1−xZrxO2−δ (0 ≤ x ≤ 1) and Pr1−xyPdyZrxO2−δ (x = 0.50, y = 0.02) solid solutions have been synthesized by a single step solution combustion method. The whole range of solid solution compositions crystallize in cubic fluorite structure. The lattice parameter ‘a’ linearly varied up to x = 1.0. Oxygen-storage capacity (OSC) and redox properties of Pr1−xZrxO2−δ (0.0 ≤ x ≤ 0.8) solid solutions have been investigated by temperature-programmed reduction (TPR) and are compared with those of Ce1−xZrxO2. Pr1−xZrxO2−δ exhibited H2 uptake and CO oxidation at a lower temperature than Ce1−xZrxO2. Small amount of Pd ion (y = 0.02) substitution was found to bring down the temperature of oxygen release-storage significantly.  相似文献   

12.
(Pb1 ? x Ln x )(Zr0.53Ti0.47)O3 and (Pb1 ? x Ln x )(Zr0.65Ti0.35)O3 (x = 0.02, 0.06; Ln = La, Pr, Gd, Yb) solid solutions have been prepared by modified solid-state synthesis using organic-ligand precursors. The solid solutions have been characterized by thermal analysis, IR spectroscopy, x-ray powder diffraction, and atomic force microscopy. All of them have a rhombohedrally distorted perovskite structure (sp. gr. R3c).  相似文献   

13.
Ceramic powders of (Nd x Gd1−x )2Zr2O7 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were synthesized by chemical-coprecipitation followed by calcination method, and were then pressureless-sintered at 1,600 °C for 10 h in air. Phase constituents and morphologies of the synthesized powders and sintered ceramics were identified by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A high-temperature dilatometer and a laser-flash method were used to analyze the thermal expansion coefficient and thermal diffusion coefficient of different ceramics from room temperature up to 1,400 °C. Thermal conductivity was calculated from thermal diffusivity, density, and specific heat. (Nd x Gd1−x )2Zr2O7 (0.1 ≤ x ≤ 1.0) ceramics are with a pyrochlore-type structure; however, pure Gd2Zr2O7 exhibits a defective fluorite-type structure. The average linear thermal expansion coefficients of different (Nd x Gd1−x )2Zr2O7 ceramics decrease with increasing the value of x from 0 to 1.0 in the temperature range of 25–1,400 °C. The thermal conductivities of (Nd x Gd1−x )2Zr2O7 ceramics are located within the range of 1.33 to 2.04 W m−1 K−1 from room temperature to 1,400 °C.  相似文献   

14.
Ca0.5(1 + x)Zr2–xFe x (PO4)3 phosphates have been synthesized by a sol–gel process. The individual compounds and solid solutions obtained crystallize in the NaZr2(PO4)3 structure (trigonal symmetry, sp. gr. R\(\bar 3\)). Using high-temperature X-ray diffraction, we have determined their thermal expansion parameters in the temperature range from 25 to 800°C. With increasing x, the magnitudes of their linear thermal expansion coefficients and thermal expansion anisotropy decrease. Most of the synthesized phosphates can be rated as low-thermal-expansion compounds and can be regarded as materials capable of withstanding thermal “stress.”  相似文献   

15.
The single phase compound Ca0.5Zr2P3O12 (CZP) was prepared by solid state reaction technique. This material shows a negative thermal expansion in the temperature region of 30°–500°C. The effect of MgO and ZnO addition on the sintering behavior and thermal expansion characteristics of Ca0.5Zr2P3O12 was investigated. Mg3(PO4)2 and Zn3(PO4)2 were observed as minor phases responsible for improving the overall thermal expansion of CZP + MgO, ZnO systems. SEM studies and density data are also discussed. Observed sintering kinetics suggest that a liquid phase is promoting the sintering reaction. 98+% of theoretical density and near zero expansion behavior in certain compositions were observed.  相似文献   

16.
Ba1.5-xSrxZr4P5SiO24 compounds withx = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), withx = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly,x = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign.X = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials  相似文献   

17.
Aluminium titanate has a near zero thermal expansion coefficient (=0.8×10–6 °C–1) in the range 20 to 1000 °C, nevertheless it decomposes below 1200 °C.The thermal stabilization of Al2TiO5 without altering its thermal expansion has been considered by partial substitution in the structure compound of Al3+ ions by Fe3+ ions.The solid solutions prepared by solid state reaction are in agreement with the general formula Al(1–x)2Fe2x TiO5(0<x<0.2)The iron ions present in the crystal structure of Al2TiO5 act on its lattice parameters and bring about a catalytic effect in the formation of materials.Solid solutions show a strong thermal stability and a thermal expansion coefficient specially for the solid solution (x=0.1) which is not far from the Al2TiO5 value even after annealing for 300 h at 1000 °C.The mechanical properties of such materials corresponding to that solid solution present strength values lower than Al2TiO5 ones. After annealing, however, these are improved later due to a microcrystallization.  相似文献   

18.
The temperature dependences of the thermal expansion coefficient and isothermal compressibility for TlGaSe2(1 ? x)S2x (x = 0.1, 0.2) solid solutions show an anomaly attributable to a second-order phase transition. The thermal expansion data have been used to evaluate the Debye characteristic temperature Θ, rms atomic displacement, and specific heat difference of the solid solutions.  相似文献   

19.
《Nanostructured Materials》1998,10(6):955-964
Nanostructured ceria-zirconia solid solutions (Ce1 − xZrxO2, x = 0 to 0.9) have been synthesized by a single step solution combustion process using cerous nitrate, zirconyl nitrate and oxalyl dihydrazide (ODH) / carbohydrazide (CH). The as-synthesized powders show extensive XRD line broadening and the crystallite sizes calculated from the XRD line broadening are in the nanometer range (6–11 nm). The combustion derived ceria zirconia solid solutions have high surface area in the range of 36–120 m2/g. Calcination of Ce1 −xZrxO2 at 1350 °C showed three distinct solid solution regions: single phase cubic (x ≤ 0.2), biphasic cubic-tetragonal (0.2 < x 0&#x030C;.8) and tetragonal (x > 0.8). When x ≥ 0.9, the metastable tetragonal phase formed transforms to monoclinic phase on cooling after calcination above 1100 °C. The homogeneity of Ce1 − xZrxO2 has been confirmed by EDAX analysis. The Temperature Programmed Reduction (TPR) measurement of Ce0.5Zr0.5O2 was carried out with H2 and the TPR profile showed two water formation peaks corresponding to the utilization of surface and bulk oxygen.  相似文献   

20.
Nanostructured manganese-stabilized cubic zirconia (MnSZ) powders, solid solutions of Zr1−xMnxO2−yx = 0, 0.03, 0.06 and 0.09, were obtained via the sol–gel method. The doped phases crystallized at 500 °C into black cubic nanocrystalline zirconia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号