首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
汽车轻量化中的管材内高压成形技术   总被引:1,自引:0,他引:1  
简述管材内高压成形技术基本原理、历史和现状。内高压成形技术具有减轻重量、提高产品质量、降低生产成本、近净成形与绿色制造技术的独特工艺特点和技术、经济优势。内高压成形工艺的关键技术有:缺陷与控制策略技术、数值模拟技术、摩擦与润滑技术。内高压成形技术有待深入研究的问题有:管材力学性能测试方法、高压成形摩擦测定、高压成形件设计准则、模具设计关键技术。内高压成形技术的发展趋势是:双层管内高压成形;拼焊管内高压成形;内高压成形与连接复合。  相似文献   

2.
空心变截面构件内高压成形工艺与装备   总被引:5,自引:1,他引:5  
介绍汽车轻量化的途径及内高压成形技术的应用趋势。阐述管材内高压成形基础理论、工艺模具关键技术以及产业化应用方面的最新进展。在内高压成形基础理论方面,揭示弯曲管内高压成形的环向应力、轴向应力及环向应变、轴向应变和厚向应变的分布规律。阐明内高压整形阶段圆角充填时存在极限圆角半径,并分析液体压力和摩擦条件对极限圆角半径的影响规律。在工艺模具关键技术方面,提出降低成形压力的内凹预制坯方法和大径厚比超薄异型管件内高压成形方法,解决多孔同步液压冲孔模具等关键技术。在工业应用方面,攻克超高压建立、高压水介质传输、超高压与多轴位移闭环实时控制等多项设备关键技术,为国内汽车主机厂及零部件厂研制了多台生产用大型内高压成形机,成功应用于奔腾轿车副车架、扭力梁和SUV车前支梁等汽车零部件的批量制造。  相似文献   

3.
介绍了管材液压成形工艺,根据液压成形原理,自主研制出具备高压发生器、阀门管路等配件的超高压液压系统,同时通过可编程控制器实现对电磁元件的控制,有效地解决了管材在液压成形过程中的端口密封、进给补料等关键问题,为管材液压成形的实验研究奠定了基础。  相似文献   

4.
管材流体高压成形起皱行为与皱纹控制研究进展   总被引:2,自引:0,他引:2  
崔晓磊 《机械工程学报》2021,57(12):226-236
管材的起皱行为及其控制方法是目前流体高压成形领域的研究热点,对汽车、航空航天等重要领域高性能轻质整体复杂薄壁零件的成形制造具有重要意义.针对流体高压成形中薄壁管材受载复杂而易发生失稳起皱的问题,首先综述了管材在轴压或轴压与内压联合作用下的塑性失稳及起皱行为,讨论常用的管材轴向临界起皱应力模型及在流体高压成形中的应用,并发现通过预制有益皱纹可预先在变形区聚集材料从而显著提高管材成形极限.此外,重点介绍管材流体高压成形过程中起皱行为的控制方法,对管材起皱过程的应力分布、皱纹几何形状的演变规律进行了分析.提出可将三维应力状态和非均匀温度场作用下管材起皱行为作为重点研究方向,这不仅有助于构建复杂受载、非均质管壳的失稳起皱理论体系,而且可提高难变形材料大膨胀率管件的成形制造能力.  相似文献   

5.
矩形截面直角弯管内高压成形过程的数值模拟   总被引:6,自引:1,他引:6  
内高压成形技术是以轻量化和一体化为特征的一种空心变截面轻体构件的先进制造技术。在汽车工业领域,运用该技术能够生产出质量轻而且具有很高的强度和刚度的零件。矩形截面直角弯管是一类特殊零件,具有典型的直角弯曲特征.常规弯曲工艺无法加工。采用内高压成形技术,可避免常规弯曲方法的不足,实现该类零件的成形。对采用管材内高压成形技术加工矩形截面工件成形过程进行了有限元模拟,对整个管件的成形规律进行了总结分析,对于应用内高压成形技术生产该类零件具有重要指导意义。  相似文献   

6.
基于内高压成形的液压冲孔变形机理   总被引:3,自引:0,他引:3  
介绍了基于管材内高压成形的液压冲孔工艺过程、类型及特点。采用MARC有限元分析软件,对典型管材零件的液压冲孔过程进行了数值模拟,获得了应力、应变及变形的分布及变化情况,发现了在孔的外缘部位存在着塑性弯曲变形区。在此基础上,阐述了液压冲孔的变形机理,分析了液体压力对冲孔质量产生的影响。  相似文献   

7.
介绍了内高压热态成形技术的重要性后,设计一种可以研究铝合金管成形性能的内高压热态成形设备。设备的成形内高压采用手动打压泵提供,简便易操作,成形过程中可以提供最高达150Mpa的内高压;设备的加热采用加热棒进行加热,设备采用温度控制仪与热电偶组合对温度进行控制,可以提供室温到300℃区间的成形温度;密封形式采用硬密封,密封结构利用锥台式的结构进行密封。设备可以对小管径的铝合金管材进行胀形实验,可以研究铝合金管材从室温到300℃区间不同温度的成形性能。  相似文献   

8.
本文根据内高压成形原理设计了管材内高压成形液压控制系统.内高压成形过程中的关键问题是内高压的产生、轴向推力的控制以及两者的配合.本系统执行上下模具的合模动作,左、右冲头的推制控制,乳化液充液以及增压过程;利用增压缸产生高压内力,电磁铁的动作情况用可编程控制器进行控制;系统中所有执行元件共用一个并联液压源,提高能源利用率.  相似文献   

9.
管材固体颗粒介质成形工艺及其塑性理论研究   总被引:2,自引:0,他引:2  
提出一种既能克服刚性模成形和软模成形的缺点又吸取它们各自优点的成形工艺——管材固体颗粒成形工艺(SGMF),为材料的制备和加工提供了新的方法和手段。采用塑性理论对非均匀内压作用下的管材成形过程中的自由变形区塑性变形进行研究,建立了在非均匀内压作用下的管材成形塑性理论,得到了自由变形区的应力、应变及其壁厚的理论计算公式,并通过试验进行了实际验证。  相似文献   

10.
针对某乘用车异形排气管整体制造的难题,开展4系列不锈钢管材包括多向局部加载液力成形新方法的全流程液力成形工艺研究。基于Dynaform有限元模拟软件,建立绕弯成形及液力成形的有限元模型,监测管材壁厚分布的演化规律,进而优化成形工艺参数,开展实验验证。研究结果表明:初始管材直径对液力成形管材壁厚分布影响显著,初始管材直径为54 mm时能很好地满足工艺要求;在纵向加载液力成形阶段,可通过在上模具设计凸筋来实现对管材的局部加载成形,而在横向加载液力成形阶段,内压为48 MPa时可避免管材破裂、折叠等缺陷的产生;此外,局部加载液力成形可导致管材的应力应变状态发生明显改变,变形区管材的壁厚呈现增大趋势,最大减薄率由27.43%降至24.65%,最终零件的最大减薄率为28.05%。实验结果与模拟结果基本吻合,最大偏差值仅为2.89%。  相似文献   

11.
The hydroforming technology may bring many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower springback, improved strength and durability and design flexibility. In this study, the whole process of front sub-frame parts development by tube hydroforming using steel material having tensile strength of 440 MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive engine cradle by the hydroforming process were carefully investigated. Overall possibility of hydroformable engine cradle parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydroforming. At the die design stage, all the components of prototyping tool are designed and interference with the press is examined from the point of deformed geometry and local thinning.  相似文献   

12.
提出改进液压成型工艺,并通过Dynaform软件仿真及实际生产验证。该方法舍弃了通常管材液压成形中所需的超高压供给系统以及平衡冲头,进而大大降低设备费用。在验证工艺正确基础上,通过Dynaform软件仿真分析影响三通管液压成型因素。仿真模拟分析为模具设计方案和液压成形工艺方案设计提供了科学的依据,提高了设计效率。  相似文献   

13.
To investigate the effect of the loading path on the forming result and get the reasonable range of the loading path in tube bulge hydroforming process, a mathematical model considering the forming tube as an ellipsoidal surface is proposed to examine the plastic deformation behavior of a thin-walled tube during the tube bulge hydroforming process in an open die, and thus different loading paths are gained based on this model. The finite element code Ls-Dyna is also used for simulating the tube bulge hydroforming process. The effect of the loading paths on the bulged shape and the wall thickness distribution of the tube are discussed, and then the reasonable range of the loading path for the tube bulge hydroforming process is determined.  相似文献   

14.
To investigate the effect of the loading path on the forming result and get the reasonable range of the loading path in tube bulge hydroforming process, a mathematical model considering the forming tube as an ellipsoidal surface is proposed to examine the plastic deformation behavior of a thin-walled tube during the tube bulge hydroforming process in an open die, and thus different loading paths are gained based on this model. The finite element code Ls-Dyna is also used for simulating the tube bulge hydroforming process. The effect of the loading paths on the bulged shape and the wall thickness distribution of the tube are discussed, and then the reasonable range of the loading path for the tube bulge hydroforming process is determined.  相似文献   

15.
Bursting in tube hydroforming is preceded by localized deformation, which is often called necking. The retardation of the initiation of necking is a means to enhance hydroformability. Since high strain gradients occur at necking sites, a decrease in local strain gradients is an effective way to retard the initiation of necking. In the current study, the expansion at potential necking sites was intentionally restricted in order to reduce the strain gradient at potential necking sites. From the strain distribution obtained from FEM, it is possible to determine strain concentrated zones, which are the potential necking sites. Prior to the hydroforming of a trailing arm, lead patch is attached to the tube where the strain concentration would occur. Due to the incompressibility of lead, the tube expansion is locally restricted, and the resultant strain extends to adjacent regions of the tube during hydroforming. After the first stage of hydroforming, the lead is removed from the tube, and the hydroforming continues to obtain the targeted shape without the local restriction. This method was successfully used to fabricate a complex shaped automotive trailing arm that had previously failed during traditional hydroforming processing.  相似文献   

16.
管材液压成形技术是一个相对新颖的技术,其在应用过程中仍然有许多问题需要研究和解决。基于有限元法的管材液压成形数值模拟技术发展的时间更短,有待进一步研究和发展。针对这种发展要求,提出了管材液压成形数值模拟中分析模型的构造方法,并且重点介绍了逆向构造中管件中心轴线的抽取算法即边界递进搜寻法,这个算法不仅运行速度快,实现简单,而且具有较强的适应性。  相似文献   

17.
管材液压成形技术是一个相对新颖的技术,其在应用过程中仍然有许多问题需要研究和解决。基于有限元法的管材液压成形数值模拟技术发展的时间更短,有待进一步研究和发展。针对这种发展要求,提出了管材液压成形数值模拟中分析模型的构造方法,并且重点介绍了逆向构造中管件中心轴线的抽取算法即边界递进搜寻法,这个算法不仅运行速度快,实现简单,而且具有较强的适应性。  相似文献   

18.
Based on the mathematical formulations for predicting forming limits induced by buckling, wrinkling and bursting of free-expansion tube hydroforming, a theoretical “Process Window Diagram” (PWD) is proposed and established in this paper. The theory developed in the first part of the present work was formulated within the context of free-expansion tube hydroforming with both combined internal pressure and end feeding. The PWD is designed to provide a quick assessment of part producibility for tube hydroforming. The predicted PWD is validated against experimental results conducted for 6260-T4 60×2×320 (mm) aluminum tubes. An optimal loading path is also proposed in the PWD with an attempt to define the ideal forming process for aluminum tube hydroforming. Parametric studies show that the PWD has a strong dependency on tube geometry, material property and process parameters. To the authors’ knowledge, this is the first attempt that a PWD is being formulated theoretically. Such a concept can be advantageous in deriving design solutions and determining optimal process parameters for tube hydroforming processes.  相似文献   

19.
In tube hydroforming, the concurrent actions of pressurized fluid and mechanical feeding allows obtaining tube shapes characterized by complex geometries such as different diameters sections and/or bulged zones. Main process parameters are material feeding history (i.e., the punches velocity history), internal pressure path during the process, and (in T- or Y-shaped tube hydroforming) counterpunch action. What is crucial, in such processes, is the proper design of operative parameters aimed to avoid defects (for instance underfilling or ductile fractures). Actually, the design of tube hydroforming operations is mainly aimed to prevent bursting or buckling occurrence and such issues can be pursued only if a proper control of process parameters is performed. In this paper, a design procedure for Y-shaped tube hydroforming operations was developed. The aim of the presented approach is to calibrate both internal pressure history during the process and counterpunch action in order to reach a sound final component. The approach utilized to optimize the aforementioned parameters is founded on gradient-based techniques and the optimization problem here addressed depends on a considerable number of design variables. In order to reduce the total number of numerical simulations/experiments necessary to reach the optimal values of the design variables, the basic idea of this paper is to develop a sort of decomposition approach aimed to take into account subsets of design variables in the most effective way. The proposed decomposition approach allows avoiding about 50% of the numerical simulations necessary to solve the same problem by traditional gradient technique.  相似文献   

20.
分析了液压成形设备的组成以及在研发波动加载管材液压成形系统过程中涉及的关键问题,并对每个问题都提出了合理的解决方案,实现了系统的设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号