共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
针对单幅低分辨率图像的超分辨率重建,提出一种基于稀疏表示的改进算法。通过联合输入低分辨率图像块和对应生成的高分辨率图像块,求解其在高低分辨率字典对上的稀疏表示系数,再将系数与高分辨率字典结合,修正输出的高分辨率图像块。仿真实验表明,文中提出的算法有效提升了重建图像的质量。 相似文献
3.
4.
基于DSP系统的超分辨率图像重建技术研究 总被引:3,自引:2,他引:3
由于航空光电设备造价与体积等的限制,需要在不改变航空光电设备硬件结构的前提下,获取尽可能清晰的图像或视频。文章提出了基于DSP图像处理系统的超分辨率重建方法,首先利用Fourier-Mellin变换法和Keren算法的联合优化算法进行运动估计;然后利用基于边缘保持的凸集投影简化方法进行超分辨率重建;最终结合DM642的特征,在不降低精度的前提下,对算法进行优化实现。该方法在不增加系统结构体积和成本的前提下,有效地提高了成像系统的分辨力,进而提高系统的目标识别能力。在以DM642为核心嵌入式图像处理平台中实现超分辨率重建实验,所采用的相机分辨率为720×576,整个重建的时间由传统的几分钟甚至几十分钟下降至20s左右。实验结果表明,用本文方法重建出的图像细节明显比单帧插值的图像清晰,图像的平均梯度和信息熵有了明显提高。 相似文献
5.
6.
7.
高分辨率图像是人们一直追求的目标。超分辨率图像重建技术就是人们获取高分辨率图像的一种很重要的方法。本文分析了超分辨率图像重建的原理,总结了各种重建方法的特点,指出超分辨率图像重建的发展历史、应用场合和前景。 相似文献
8.
将信道估计视为低分辨率图像重建为高分辨率图像,借鉴图像超分辨重建思想,提出了一种基于快速超分辨重建及残差连接思想的信道估计方法——ResFSRNet。采用最小二乘法(Least Square,LS)计算单个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)子帧中所有导频处的信道响应,将其视为小尺寸低分辨率“图像”作为神经网络输入,利用多个卷积层对其进行特征提取,且融入残差连接提升性能,最后通过转置卷积重构出完整OFDM子帧信道响应。在不同抽头延迟线信道环境中进行仿真,通过信道估计误差和链路误码率结果比较,表明ResFSRNet性能优于LS、实用信道估计及基于超分辨率重建的ChannelNet,且较ChannelNet在减少约99%计算量的前提下提高了约2 dB信道估计性能。 相似文献
9.
图像超分辨率研究综述 总被引:4,自引:0,他引:4
介绍了图像超分辨率技术的概念及来源,综述了超分辨率技术在国内外发展的概况,澄清了图像超分辨率重建和超分辨率复原两个概念,对图像超分辨率的方法进行了分类对比,并对图像超分辨率的发展进行了展望. 相似文献
10.
本文介绍了视频编码中的图像超分辨率技术的技术,对图像处理基础进行介绍:什么是图像,图像的基本类型,图像模糊,图像恢复,图像增强和图像超分辨率等。介绍图像处理关键技术的应用背景与技术发展,包括基于插值的超分辨率,基于重建的超分辨率,基于学习的超分辨率。及其中存在可改进的问题提出解决思路。 相似文献
11.
针对传统超分辨率图像重建算法速度慢的缺点,提 出了一种基于自适应各向异性正则化的快速超分辨率图像重建算法。本文 算法兼顾重建图像质量的同时,提升了图形的重建速度。基于传统迭代算法,本文算法通过 优化约束条件,大量剔除了冗余过程, 弥补了传统算法的不足;同时引入一种具有自适应能力的各向异性平滑项,可以适应各种 复杂的运动模型。另外,提出 以图像的峰值信噪比(PSNR)为标准,作为重建迭代的截止 条件。运 用本文算法对序列低分辨率图像进行重建,证明了本文算法可以更快实现超分辨率图像重 建。 相似文献
12.
图像的超分辨率重建技术可以提升图像质量,改善图像视觉效果,在现实中具有很高的实用价值。针对基于K-SVD的超分辨率重建算法的不足,本文提出一种基于稀疏K-SVD的单幅图像超分辨率重建算法。首先,采用稀疏K-SVD方法进行训练获得高低分辨率字典对,以待重建的低分辨率图像及其降采样作为字典训练的样本,提高了字典和待重建的低分辨率图像的相关性;然后,采用逐级放大的思想进行重建;最后,利用非局部均值的方法,进一步提高重建效果。实验表明,与基于K-SVD的超分辨率重建算法相比,本文算法重建图像的峰值信噪比平均提高了0.6dB左右。重建图像在视觉效果上,也有一定程度的提升。 相似文献
13.
基于超完备稀疏表示理论,并根据人脸图像的特征,提出一种基于局部约束的人脸图像超分辨率重构算法。该算法首先通过样本训练出一对高、低分辨率相关联的冗余字典;再根据局部范围内人脸图像的相关性,重构出高分辨率图像;最后对图像进行全局优化。为验证算法的有效性,本文利用ORL标准图像库进行了对比实验,实验结果表明,该算法能够有效提高峰值信噪比,同时能够更好地恢复人脸图像的高频信息,有一定的实用价值。 相似文献
14.
15.
The objective of super-resolution (SR) imaging is to reconstruct a single higher-resolution image based on a set of lower-resolution images that were acquired from the same scene to overcome the limitations of image acquisition process for facilitating better visualization and content recognition. In this paper, a stochastic Markov chain Monte Carlo (MCMC) SR image reconstruction approach is proposed. First, a Bayesian inference formulation, which is based on the observed low-resolution images and the prior high-resolution image model, is mathematically derived. Second, to exploit the MCMC sample-generation technique for the stochastic SR image reconstruction, three fundamental issues are observed as follows. First, since the hyperparameter value of the prior image model controls the degree of regularization and intimately affects the quality of the reconstructed high-resolution image, how to determine an optimal hyperparameter value for different low-resolution input images becomes a very challenging task. Rather than exploiting the exhaustive search, an iterative updating approach is developed in this paper by allowing the value of hyperparameter being simultaneously updated in each sample-generation iteration. Second, the samples generated during the so-called burn-in period (measured in terms of the number of samples initially generated) of the MCMC-based sample-generation process are considered unreliable and should be discarded. To determine the length of the burn-in period for each set of low-resolution input images, a time-period bound in closed form is mathematically derived. Third, image artifacts could be incurred in the reconstructed high-resolution image, if the number of samples (counting after the burn-in period) generated by the MCMC-based sample-generation process is insufficient. For that, a variation-sensitive bilateral filter is proposed as a ‘complementary’ post-processing scheme, to improve the reconstructed high-resolution image quality, when the number of samples is insufficient. Extensive simulation results have clearly shown that the proposed stochastic SR image reconstruction method consistently yields superior performance. 相似文献
16.
为了用一组低质量、低分辨率图像来产生高质量、高分辨率图像,提出了一种基于Perona-Malik(P-M)扩散的超分辨率图像重建方法。首先分析了lp范数的稳健性以及P-M扩散保持图像纹理和边缘的特点;将两者相结合,并加入了抑制图像明亮特征的调整项;最后给出了迭代格式进行迭代求解。实验结果表明,本文方法的峰值信噪比(PSNR)平均提高了0.85 dB,图像质量也得到了提高。 相似文献
17.
Haidawati Nasir Vladimir Stanković Stephen Marshall 《Signal Processing: Image Communication》2012,27(2):180-191
In this paper, we address a super-resolution problem of generating a high-resolution image from low-resolution images. The proposed super-resolution method consists of three steps: image registration, singular value decomposition (SVD)-based image fusion and interpolation. The contribution of this work is two-fold. First we customize an image registration approach using Scale Invariant Feature Transform (SIFT), Belief Propagation and Random Sampling Consensus (RANSAC) for super-resolution. Second, we propose SVD-based fusion to integrate the important features from the low-resolution images. The proposed image registration and fusion steps effectively maintain the important features and greatly improve the super-resolution results. Results, for a variety of image examples, show that the proposed method successfully generates high-resolution images from low-resolution images. 相似文献
18.
基于深度学习的真实图像超分辨率(super-resolution, SR)重建算法目前存在参数量过大的问题,为解决该问题,提出了一种多尺度残差特征融合的轻量级真实图像SR重建算法。首先利用深度可分离卷积和复用卷积针对多尺度特征提取块进行改进,在提取特多尺度特征的同时实现了模块的轻量化,参数量仅为改进前的7.5%。其次使用残差特征融合操作将4个多尺度深度可分离特征提取块(multi-scale depthwise separable block, MSDSB)聚合成一个残差特征融合块,以减少残差路径长度。然后使用增强型注意力模块从通道和空间维度进行自适应调整以提升算法性能。最后使用自适应上采样模块获得SR重建图像。在消融实验中,本文算法重建性能超过原始算法,且参数量仅为3.53×106,是原始算法的34.5%。在对比实验中,其重建性能超过了当前主流算法,与组件分而治之(component divide-and-conquer, CDC)算法相比,PSNR和SSIM指标分别提升了0.01 dB与0.001 0,且参数量仅为组件CDC算法的8.84%,在保证重建性能的同... 相似文献