首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
针对标准遗传算法用于K-means优化聚类存在的问题,提出了一种基于组合优化方法的K-means聚类算法.实验结果表明:基于组合优化方法的K-means优化聚类算法效率较高,结果较好.  相似文献   

2.
基于信息熵的蚁群聚类算法是一种自组织聚类算法,具备健壮性、可视化等特点,并能生成一些新的有意义的聚类模式.基于信息素的K-means算法的K值和初始聚类中心是事先给定的,而往往两者的选择可以直接影响聚类的效果和速度(K-means算法的缺点之一).因此,在基于信息熵的蚁群聚类算法的基础上,结合基于信息素的K-means算法,提出了一种聚类组合算法.  相似文献   

3.
为解决现有的分布式聚类算法效率低下和不能保护数据隐私的问题,在K-Dmeans算法的基础上,提出一种新的分布式聚类算法.该算法利用数据对象间的密度函数值来优化站点初始聚类中心,从而大大降低了聚类的迭代次数;同时各从站点只需向主站点传送其聚簇的特征信息,有效降低分布式聚类过程中的通信量,保护了各个站点的独立性,实验结果表...  相似文献   

4.
基于形状相似距离的K-means聚类算法   总被引:1,自引:0,他引:1  
把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。  相似文献   

5.
为解决传统K-means算法初始质心的随机选取以及聚类过程中每个数据样本到聚类中心距离的重复计算问题,提出了一种高效的基于初始聚类中心优化的K-means算法,采用最小方差优化初始质心,通过存储每次迭代中所有数据点的簇标志和到最近聚类中心的距离并用于下一次迭代,避免了重复计算数据点到每个中心的距离。在UCI数据库中五个不同的数据集上进行了测试,对各个算法在聚类准则函数,运行时间以及迭代次数上进行实验结果比较,表明在不降低聚类性能的前提下,减少了迭代次数,缩短了聚类时间,证明了改进算法的有效性和高效性。  相似文献   

6.
7.
基于初始聚类中心优化和维间加权的改进K-means算法   总被引:1,自引:0,他引:1  
针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。  相似文献   

8.
基于K-means聚类算法的分析及应用   总被引:7,自引:0,他引:7  
聚类分析能作为一个独立的工具来获得数据分布的情况,观察每一个簇的特点,集中对特定的某些簇作进一步的分析;本文主要介绍了传统聚类算法及其局限性,然后对直接K-means算法进行分析改进,着重分析了该算法的思想体系以及它的优缺点,针对它的缺点之一提出了一种基于距离的改进策略,并将该改进策略应用到对学生成绩的分析中,实验目的是应用该算法将学生划分为合理的簇(或类)以及对聚类结果进行分析,总之实验表明了该算法的灵活性以及在此应用中的适用性.  相似文献   

9.
传统K-means聚类算法的性能依赖于初始聚类中心的选择。本文将复杂网络节点的属性值作为节点的度、聚集度与聚集系数的加权值,通过计算所有节点的加权综合聚集特征值,选取综合聚集特征值高,并且彼此之间无高聚集性特征的个节点作为聚类的初始聚类中心,然后进行聚类迭代过程。实验结果表明,新算法对初始聚类中心的选取更迅速有效,避免了传统K-means算法初始聚类节点选取的敏感性,进而提高K-means算法的聚类质量。  相似文献   

10.
一种基于粗糙集的K-means聚类算法   总被引:2,自引:0,他引:2  
对粗糙集进行了相关研究,并提出了一种以粗糙集理论为基础的K-平均聚类算法,该算法以信息表中条件属性和决策属性的一致性原理为基础,应用粗糙集的属性约简算法消除冗余属性,利用各属性重要度确定其权值,在此基础上应用改进的K-平均算法进行聚类分析.该方法的优势在于消除了不重要的属性,赋予了各属性权值,使聚类更有效,更客观.实验结果表明,该方法是有效的.  相似文献   

11.
基于K均值聚类的定位算法分析   总被引:1,自引:0,他引:1  
李炜 《广西工学院学报》2012,23(3):45-48,76
在描述了聚类算法的基本思想和概念的基础上,介绍了一种常见的聚类算法—K均值和K中心点聚类算法,通过处理认知无线电网络中主用户定位在海量数据中应用K均值聚类算法,对该算法进行分析,仿真结果表明:与传统的主用户定位算法相比,使用K均值聚类算法能够有效地提高定位精度和降低定位算法的复杂度.  相似文献   

12.
针对基于核的多视图聚类算法(kernel based multi-view clustering method, MVKKM)在处理大规模数据集时运行时间长的缺点,引入增量聚类模型的概念,将MVKKM算法与增量聚类模型相结合,提出基于核K-means的多视图增量聚类算法(incremental multi-view clustering algorithm based on kernel K-means, IMVCKM)。通过将数据集分块,在每个数据块中使用MVKKM算法聚类,并将每个数据块的聚类中心作为下个数据块的初始聚类中心。将所有块的聚类中心进行整合后再次进行多视图聚类,得到最终的聚类结果。试验结果表明,在3个大规模数据集上,IMVCKM算法相较于MVKKM算法在3个评价指标上具有更好的聚类结果,且运行时间更短。该算法在保证聚类性能的基础上大大降低算法的运行时间。  相似文献   

13.
基于改进K -均值聚类的汉语语块识别   总被引:1,自引:0,他引:1  
为了既避免数据稀疏又充分考虑相邻词性的关系和每种短语的内部组成规律,提出了改进K-均值聚类方法.此方法把每个短语看成是以中心词为核心的聚簇,充分考虑每种短语的内部组成规律;依据语料库中的数据来确定每个类的初始中心,使有指导的统计方法和无指导的聚类方法有机结合,既提高了聚类的准确率,又避免了因汉语语块库规模较小而导致的数据稀疏现象.应用改进K-均值聚类方法对7种汉语语块进行识别,F值达到了92.94%,因此,该方法对汉语语块识别是有效的.  相似文献   

14.
针对图像分割中K均值算法全局搜索能力差、初始聚类中心选择敏感的问题,提出了一种将自适应人类优化算法与K均值算法相结合的聚类算法.该算法利用自适应人类学习优化算法初始化聚类中心,提高K均值算法的稳健性.结果表明,该算法聚类得到的标准差相比传统K均值算法和基于粒子群K均值(PSO-Kmeans)算法分别小两个数量级和一个数量级,同时图像分割得到的PSNR值均较高,具有算法收敛速度更快,聚类质量更好,图像分割效果更好,适应性更强的优点.  相似文献   

15.
自适应选取聚类中心K-means航迹起始算法   总被引:3,自引:0,他引:3  
为揭示多传感器观测数据的正态分布态势,实现对源于异类目标的跟踪,提出一种新的多传感器航迹起始算法,本算法主要特点是初始聚类中心的自适应选取以及对逻辑估计法的起始夹角修正。估计算法中采用不相似性度量阈值的角度衡量方法,同时还结合聚类数目自适应归纳及初始聚类中心的推演逼近,从而使单传感器的航迹起始估计算法可以应用于多传感器的航迹起始根据;然后对聚类后的数据采用修正的逻辑航迹起始算法起始目标航迹。蒙特卡洛估计表明,新的自适应K-means聚类估计区分呈团状分布的不同目标的能力好,且通过估计算法得到的目标非常接近真实目标位置。经过自适应聚类处理后的目标航迹起始估计可有效滤除杂波干扰,降低虚警概率,能够获得较好的多传感器航迹起始。  相似文献   

16.
电力系统次同步振荡具有非平稳、非线性特性,现有检测方法难以捕获振荡特征和变化趋势,为此提出K-means结合SWT的振荡检测方法,并将该方法引入次同步振荡谐波检测分析中.首先,利用SWT较强的抗模态混叠能力和抗噪性,在噪声环境下清晰直观表征信号振荡模态.同时,在SWT中运用频域切片,提取电力信号中的多重振荡模态,进行重构和参数辨识.考虑到SWT将小波系数挤压至中心频率,采用K-means聚类方法准确求出重构前振荡信号中心频率,并自动选择信号重构频域区间.最后,通过仿真算例验证该方法的有效性.  相似文献   

17.
结合粗糙集理论与K均值算法,提出一种粗糙K均值多靶点中心优化方法,通过噪声去除、多靶点区域识别、靶点中心计算三个步骤获取多个靶点中心的最优坐标。最后,在仿真桥梁上进行检验,结果显示其精度为74.5%,相关系数为0.290,说明该方法具有一定的准确性与鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号