首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 1 μm thick undoped GaAs buffer layer, a 1500 Å thick n-type GaAs layer, an undoped 500 Å thick AlAs layer and a 50 Å thick GaAs cap layer were consecutively grown by molecular beam epitaxy (MBE) on a [100] oriented semi-insulating GaAs substrate. The AlAs layer was oxidized in a N2 bubbled H2O vapor ambient at 400°C for 3 h and fully converted to Al2O3 for use as a gate insulator. The IV characteristics, having a maximum drain current of 10.6 mA, a current cut-off voltage of −4.5 V and a maximum transconductance value of 11.25 mS/mm, indicate that the selective wet thermal oxidation of AlAs/GaAs was successful in producing a depletion mode GaAs MOSFET.  相似文献   

2.
Titanium oxide films grown on the surface of a Ni(110) single crystal have been investigated using STM, LEED and AES for Ti coverages ranging from 1 to 10 ml [1 ml of Ti is defined here as equivalent to the number of top layer Ni atoms of Ni(110)]. The oxide overlayers were prepared by vapour phase deposition of Ti followed by oxidation in 1×10−7 mbar O2 at 800 K. Oxidation of Ti coverages between 1 and 10 ML results in STM images indicating the presence of two terminations coexisting on the surface. One termination consists of islands of epitaxial rutile TiO2(110), the second having cell parameters of 2.98±0.1×3.15±0.2 Å. The latter unit cell is consistent with TiO(001) (2.99×2.99 Å2). On oxidation of higher Ti coverages (10 ml), only epitaxial rutile TiO2(110) islands are observed.  相似文献   

3.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

4.
Spectrally selective Ni-Al2O3 composite films were prepared by r.f. planar magnetron sputtering using hot-pressed targets of two different compositions. The composition of the films were varied by co-sputtering the target with additional nickel pellets distributed uniformly on the target. The composition of the films were analysed by energy-dispersive X-ray analysis. Optical simulations were carried out with the experimentally measured n and k and the published n and k of the metallic substrate. R.f.-sputtered SiO2 and Al2O3 were used as antireflection coatings. From the computer optimization studies we found that = 0.94 and (100°C) = 0.07 could be obtained with 650 Å of Ni-Al2O3 (f = 0.61) antireflected with 780 Å SiO2 on a nickel-coated glass substrate. When molybdenum-coated nickel-plated stainless steel substrates were used, the films were found to be stable up to 500°C in air.  相似文献   

5.
The analysis of high resolution synchrotron X-ray powder diffraction data of HMTTEF.C60, (HMTTEF = hexamethylenetetratellurafulvalene) gave a triclinic unit cell with a 9.9297 Å, B = 9.9359 Å, C = 13.1472 Å, = 106.966 °, β = 95.887 ° and γ = 118.252 ° in the space group P . Steric considerations suggest that there is a nearly close-packed layer of C60 molecules in the plane, and HMTTEF molecules are sandwiched between layers of C60. The compound is insulating and weakly paramagnetic and the charge-transfer is small.  相似文献   

6.
The crystallization of thin silicon nitride (Si3N4) films deposited on polycrystalline SiC substrates was investigated by X-ray diffractometry as a function of annealing time. The amorphous Si3N4 films were produced by means of reactive r.f. magnetron sputtering. Annealing at temperatures between 1300 and 1700 °C led to the formation of crystalline films composed of -Si3N4 and β-Si3N4. The fraction of β-Si3N4 in the films reaches approximately 40% at temperatures above 1550 °C. Both polymorphic modifications were formed simultaneously during the crystallization process. A transformation of -Si3N4 to β-Si3N4 could not be observed in the time and temperature range investigated. The crystallization process of amorphous Si3N4 can be described according to the Johnson–Mehl–Avrami–Kolmogorov (JMAK) formalism, assuming a three-dimensional, interface controlled grain growth from pre-existing nuclei. The rate constants show an Arrhenius behaviour with an activation enthalpy of approximately 5.5 eV.  相似文献   

7.
Specular X-ray reflectivity from SiO2 thin films prepared on silicon substrates by plasma-enhanced chemical vapor deposition showed the films to have a characteristic width of the decay in density at the free surface of 17 Å, to be about three-quarters the density of -quartz, and to have an interfacial layer at the silicon interface that was of the order of 100 Å wide and less dense than the bulk of the film. After chemical-mechanical polishing the characteristic width of the decay in density at the free surface was reduced to 10 Å; furthermore, the near-surface region to a depth of 30 Å had a greater density than the as-deposited film. Off-specular reflectivity confirmed that the decrease in characteristic width at the free surface was due to reduced roughness upon polishing and also revealed that the lateral correlation length in the limit of long wavelengths was the same for both polished and unpolished samples. The compression of the near-surface region during polishing is believed to enhance the dissolution of SiO2 into the slurry which is necessary to achieve smooth surfaces.  相似文献   

8.
Hf(OCH2CH2NMe2)4, [Hf(dmae)4] (dmae=dimethylaminoethoxide) was synthesized and used as a chemical vapor deposition precursor for depositing Hf oxide (HfO2). Hf(dmae)4 is a liquid at room temperature and has a moderate vapor pressure (4.5 Torr at 80 °C). It was found that HfO2 film could be deposited as low as 150 °C with carbon level not detected by X-ray photoelectron spectroscopy. As deposited film was amorphous but when the deposition temperature was raised to 400 °C, X-ray diffraction pattern showed that the film was polycrystalline with weak peak of monoclinic (020). Scanning electron microscope analysis indicated that the grain size was not significantly changed with the increase of the annealing temperature. Capacitance–voltage measurement showed that with the increase of annealing temperature, the effective dielectric constant was increased, but above 900 °C, the effective dielectric constant was decreased due to the formation of interface oxide. For 500 Å thin film, the dielectric constant of HfO2 film annealed at 800 °C was 20.1 and the current–voltage measurements showed that the leakage current density of the HfO2 thin film annealed at 800 °C was 2.2×10−6 A/cm2 at 5 V.  相似文献   

9.
The preparation, crystal structure, TG–DTA analysis and spectroscopy investigation are reported for the 2,5-dimethoxy phenyl ammonium cyclotetraphosphate dihydrate [2,5-(CH3O)2C6H3NH3]4P4O12·2H2O. This new compound is triclinic P with unit cell dimensions: a = 7.438(5) Å, b = 11.841(7) Å, c = 12.354(4) Å,  = 96.61(4)°, β = 98.35(4)°, γ = 102.60(6)°, Z = 1 and V = 1038.0(1) Å3. Its crystal structure has been determined and refined to R = 0.049, with 5128 independant reflections. The structure can be described by rows of P4O12 ring anions along the a axis; between these rows are located the organic groups, connected to them by hydrogen bonds.  相似文献   

10.
Synthesis and single crystal structure are reported for a new gadolinium acid diphosphate tetrahydrate HGdP2O7·4H2O. This salt crystallizes in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 6.6137(2) Å, b = 11.4954(4) Å, c = 11.377(4) Å, β = 87.53(2)° and Z = 4. Its crystal structure was refined to R = 0.0333 using 1783 reflections. The corresponding atomic arrangement can be described as an alternation of corrugated layers of monohydrogendiphosphate groups and GdO8 polyhedra parallel to the () plane. The cohesion between the different diphosphoric groups is provided by strong hydrogen bonding involving the W4 water molecule.

IR and Raman spectra of HGdP2O7·4H2O confirm the existence of the characteristic bands of diphosphate group in 980–700 cm−1 area. The IR spectrum reveals also the characteristic bands of water molecules vibration (3600–3230 cm−1) and acidic hydrogen ones (2340 cm−1). TG and DTA investigations show that the dehydration of this salt occurs between 79 and 900 °C. It decomposes after dehydration into an amorphous phase. Gadolinium diphosphate Gd4(P2O7)3 was obtained by heating HGdP2O7·4H2O in a static air furnace at 850 °C for 48 h.  相似文献   


11.
Thin film formation of graphite by chemical vapor deposition using 2-methyl-1,2′-naphthyl ketone as a starting material was carried out on Ni film substrates. On Ni films directly deposited on quartz glass, the graphite films were obtained when the Ni film thickness was above 1 000 Å and above 5 000 Å at 700 °C and 1 000 °C, respectively. Depositions on thinner Ni film substrates comprise amorphous carbon (a-C) or graphite tubes which was owing to the thermal coagulation of the Ni film into droplets. On the other hand, graphite film was obtained on the Ni film with thickness 10 Å when a-C was inserted between the Ni film and the quartz glass. The coagulation of the Ni film is considered to be avoided by inserting a-C layer.  相似文献   

12.
The diffusion processes and growth kinetics of the Mo3Si silicide layer occurring at annealing the Mo5Si3/Mo diffusion couple between 1180 and 1800 °C were studied by electrothermography. The experimental results are supplemented with calculations on the behaviour of the initial Mo5Si3/Mo diffusion couple on the basis of the reaction diffusion model describing the transformation of the Mo5Si3 layer into a Mo3Si one. The values of the parabolic growth constant for Mo3Si layer were determined and the silicon diffusion coefficient in the Mo3Si phase was calculated: D = 0.165 exp[(− 247 ± 10) / RT], cm2/s, where the activation energy is expressed in terms of kJ/mol.  相似文献   

13.
G. V Gadiyak   《Thin solid films》1999,350(1-2):147-152
A simple model of thermal dissociation and recovery of hydrogen-passivated silicon defects at the Si/SiO2 interface, such as Pb - centers, during vacuum thermal annealing has been suggested. his model considers reactions of hydrogen with defect states at the Si/SiO2 interface and diffusion of liberated atomic and molecular hydrogen in a silicon dioxide film. The rate constants were calculated in diffusion approximation. A good agreement was obtained between the experimental and numerical simulation results for oxides with different thickness (204–1024 Å), grown, both, (111) and (100) samples and annealed in the temperature range (480–700°C).  相似文献   

14.
The influence of nitrogen on the diffusion barrier properties of amorphous Ni---W films was studied. Nitrogen was introduced into the amorphous Ni---W film by co-sputtering nickel and tungsten in a premixed gas mixture of 90% Ar and 10% N2, resulting in the formation of amorphous Ni30N21W49 film. X-ray analysis indicates a detectable crystallization of the amorphous film after 30 min annealing in vacuum at 600°C, accompanied by the formation of W2N, but backscattering spectrometry (BS) reveals a reaction with silicon only at about 725°C. The Schottky barrier height of this amorphous film on n-Si is stable for 30 min annealing up to at least 550°C. With an aluminum overlayer, BS indicates that an amorphous Ni30N21W49 film effectively prevents the metallurgical interaction between aluminum and silicon for 30 min up to 600°C. The Schottky barrier height of that contact configuration is also stable up to at least 550°C, suggesting that amorphous Ni---N---W films have attractive features as diffusion barriers.  相似文献   

15.
Thickness-dependent properties of sprayed iridium oxide thin films   总被引:1,自引:0,他引:1  
Iridium oxide thin films with variable thickness were deposited by spray pyrolysis technique (SPT), onto the amorphous glass substrates kept at 350 °C. The volume of iridium chloride solution was varied to obtain iridium oxide thin films with thickness ranging from 700 to 2250 Å. The effect of film thickness on structural and electrical properties was studied. The X-ray diffraction (XRD) studies revealed that the as-deposited samples were amorphous and those annealed at 600 °C for 3 h in milieu of air were polycrystalline IrO2. The crystallinity of Ir-oxide films ameliorate with film thickness thereby preferred orientation along (1 1 0) remains unchanged. The infrared spectroscopic results show Ir–O and Ir–O2 bands. The room temperature electrical resistivity (ρRT) of these films decreases with increase in film thickness. The p-type semiconductor to metallic transition was observed at 600 °C.  相似文献   

16.
The metal-induced crystallization (MIC) of hydrogenated sputtered amorphous silicon (a-Si:H) using aluminum has been investigated using X-ray diffraction (XRD) and scanning Auger microanalysis (SAM). Hydrogenated, as well as non-hydrogenated, amorphous silicon (a-Si) films were sputtered on glass substrates, then capped with a thin layer of Al. Following the depositions, the samples were annealed in the temperature range 200 °C to 400 °C for varying periods of time. Crystallization of the samples was confirmed by XRD. Non-hydrogenated films started to crystallize at 350 °C. On the other hand, crystallization of the samples with the highest hydrogen (H2) content initiated at 225 °C. Thus, the crystallization temperature is affected by the H2 content of the a-Si. Material structure following annealing was confirmed by SAM. In this paper, a comprehensive model for MIC of a-Si is developed based on these experimental results.  相似文献   

17.
High quality epitaxial GaAs films of 1.8 and 6.3 μm thickness on silicon substrates were examined for lattice distortion, misalignment and curvature by X-ray diffraction (Bond method) at 20–400 °C. These films were deposited by the metal-organic chemical vapour deposition method on the (001) plane of silicon using a buffer layer produced at Tb = 370 or 460 °C. A top layer was then grown at Tt = 560 or 650 °C. The GaAs films contract more strongly on cooling than the substrate, which causes a curvature and a tetragonal distortion below a critical temperature Tc. This temperature varies on thermal treatment at 200–400 °C and approaches Tb, the growth temperature of the buffer layer. The tetragonal distortion can be stabilized, so that Tc approximates Tb, if the GaAs films are annealed for several days at 400 °C.  相似文献   

18.
Bismuth titanate (Bi4Ti3O12) thin films with a high c-axis orientation up to 99% were prepared on (100)-oriented silicon wafers by r.f. planar magnetron sputtering using a Bi2TiO5 ceramic target at a substrate temperature of 600 °C. From the Auger electron spectroscopy depth profile of the film, there is no evidence of interdiffusion of a specific element between the film and the substrate. Relative dielectric constant of these films depends on film thickness. The behavior was explained assuming a low-dielectric-constant interface layer. Using this assumption, the relative dielectric constant of Bi4Ti3O12 film was estimated to be approximately 140. This value is close to that along the c axis in a bulk form. The remanent polarization and the coercive field were 0.8 μC cm−2 and 20 kV cm−1, respectively.  相似文献   

19.
The growth of CaF2 films with a thickness of approximately 3–4 nm on well-oriented Si(1 1 1) substrates by molecular beam epitaxy at temperatures between 410 and 560 °C were investigated by ex vacuo atomic force microscopy. Layer-by-layer growth producing atomically flat CaF2 surfaces has been observed in a very narrow growth temperature window between approximately 430 and 470 °C. Perfect triangular shaped islands of one CaF2 layer height are found on the surface with all corners aligned with the Si directions, indicating a pure B-stacking of the CaF2 film. Surprisingly, also the substrate steps have been overgrown without visible defects. Below 410 °C, two different island orientations revealed a mixture of A- and B-stacking areas in the films. Above 520 °C non-wetting of the CaF interface layer leads to epitaxial films with a rough surface morphology.  相似文献   

20.
From our measured differential cross section of Rayleigh scattering, the form factor for momentum transfers in the range 1 Å−1x ≤ 50 Å−1 was deduced. Data for U, Pb, Pt, W, Sn, Cd, Ag, Mo and Cu at energies from 60 to 662 keV and scattering angles ranging from 5° to 140° were used. In addition, for the region 1 Å−1x ≤ 50 Å−1 of momenta, experimental data from other authors at higher energies were analyzed. The experimental values obtained were compared with various form-factor theories and limits of validity are established. For the relativistic modified form factor G a good agreement always exists for θ ≤ 65°, independently of energy and atomic number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号