首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.  相似文献   

2.
The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.  相似文献   

3.
This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.  相似文献   

4.
The impacts of alternative regional development patterns on emissions, dry deposition, and air quality were examined using four visions of future land use in Austin, Texas associated with a doubling of the population in 20-40 years from 2001. Emissions and their spatial allocation were determined based on the development pattern and used to predict hourly ozone concentrations. Differences in hourly ozone concentrations due to changes in anthropogenic emissions between the future case scenarios and a 2007 base case ranged from -14 to 22 ppb and were primarily associated with the implementation of federal mobile source standards; differences due to biogenic emissions and dry deposition due to urbanization ranged from only -1.4 to 0.7 ppb. These differences in the magnitude of emissions produced greater changes in air quality than differences in regional development patterns between the four scenarios. Differences in hourly ozone concentrations between the future development scenarios and a 2007 base case ranged from -14 to 22 ppb, in contrast to differences of -3 to 5 ppb between the future scenarios. The results imply that although the effects of urbanization patterns are non-negligible, the pattern of urban development is not as significant as reductions in emissions per capita.  相似文献   

5.
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.  相似文献   

6.
The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.  相似文献   

7.
Projected population growth in Pacific Island countries, combined with their narrow resource base, declines in net food production per capita and growing reliance on imported foods, will increase their food insecurity. We examined whether policies requiring retention of edible, non-target catches by the Western and Central Pacific purse seine fishery could aid food security in seven Pacific Island countries. Estimated catches within respective Exclusive Economic Zones imply average annual per capita protein benefits from 270 g in Papua New Guinea to 25 kg in Tuvalu. Stability of supply is affected by annual catch fluctuations; the two countries with greatest potential per capita protein gains, Nauru and Tuvalu, experience a 50 and 20 % reduction, respectively, in supply in poor years. Access to benefits is affected by practicalities of landing port location, food distribution networks and communication links, particularly for countries comprised of many islands. Only five of seven countries examined, which exclude the two with greatest potential per capita benefit, have significant tuna landings directly into their ports. Specific policy mechanisms may be required to increase non-target catch access. While marine resources have a significant part to play in improving food security, use of non-target catch will not solve food insecurity alone. The tradeoffs between maximising economic benefits from licensing industrial tuna purse seine fishing versus the potential use of the resource for consumptive use, and the potential social impacts that may result, are critical national and regional policy issues facing Pacific Island countries.  相似文献   

8.
Patterns of iron use in societal evolution   总被引:2,自引:0,他引:2  
A dynamic material flow model was used to analyze the patterns of iron stocks in use for six industrialized countries. The contemporary iron stock in the remaining countries was estimated assuming that they follow a similar pattern of iron stock per economic activity. Iron stocks have reached a plateau of about 8-12 tons per capita in the United States, France, and the United Kingdom, but not yet in Japan, Canada, and Australia. The global average iron stock was determined to be 2.7 tons per capita. An increase to a level of 10 tons over the next decades would deplete about the currently identified reserves. A subsequent saturation would open a long-term potential to dramatically shift resource use from primary to secondary sources. The observed saturation pattern implies that developing countries with rapidly growing stocks have a lower potential for recycling domestic scrap and hence for greenhouse gas emissions saving than industrialized countries, a fact that has not been addressed sufficiently in the climate change debate.  相似文献   

9.
Environmental implications of municipal solid waste-derived ethanol   总被引:1,自引:0,他引:1  
We model a municipal solid waste (MSW)-to-ethanol facility that employs dilute acid hydrolysis and gravity pressure vessel technology and estimate life cycle energy use and air emissions. We compare our results, assuming the ethanol is utilized as E85 (blended with 15% gasoline) in a light-duty vehicle, with extant life cycle assessments of gasoline, corn-ethanol, and energy crop-cellulosic-ethanol fueled vehicles. We also compare MSW-ethanol production, as a waste management alternative, with landfilling with gas recovery options. We find that the life cycle total energy use per vehicle mile traveled for MSW-ethanol is less than that of corn-ethanol and cellulosic-ethanol; and energy use from petroleum sources for MSW-ethanol is lower than for the other fuels. MSW-ethanol use in vehicles reduces net greenhouse gas (GHG) emissions by 65% compared to gasoline, and by 58% when compared to corn-ethanol. Relative GHG performance with respect to cellulosic ethanol depends on whether MSW classification is included or not. Converting MSW to ethanol will result in net fossil energy savings of 397-1830 MJ/MT MSW compared to net fossil energy consumption of 177-577 MJ/MT MSW for landfilling. However, landfilling with LFG recovery either for flaring or for electricity production results in greater reductions in GHG emissions compared to MSW-to-ethanol conversion.  相似文献   

10.
HFC-365mfc (1,1,1,3,3-pentafluorobutane) is an industrial chemical used for polyurethane foam blowing. From early 2003, HFC-365mfc has been commercially produced as a substitute for HCFC-141b, whose use in Europe has been banned since January 2004. We describe the first detection of HFC-365mfc in the atmosphere and report on a 2 year long record at the high Alpine station of Jungfraujoch (Switzerland) and the Atlantic coast station of Mace Head (Ireland). The measurements at Jungfraujoch are used to estimate the central European emissions of HFC-365mfc, HCFC-141b, and CFC-11. For HFC-365mfc, we estimate the central European emissions (Germany, France, Italy, Switzerland, The Netherlands, Belgium, and Luxembourg) in 2003 and 2004 as 400-500 tonnes year(-1). These emissions are about one-third lower on a per capita basis than what we estimate from the Mace Head measurements for the total of Europe. The estimated emissions of HCFC-141b for central Europe are higher (i.e., 7.2-3.5 ktonnes year(-1)) with a decreasing trend in the period from 2000 to 2004. Residual emissions of CFC-11 are estimated at 2.4-4.7 ktonnes year(-1) in the same time period. The Po Valley (northern Italy) appears to be a main source region for HFC-365mfc and for the former blowing agents HCFC-141b and CFC-11. In 2004, the emissions of HFC-365mfc arose from a wider region of Europe, which we attribute to an increased penetration of HFC-365mfc into the European market.  相似文献   

11.
石涛  肖洪 《中国烟草学报》2017,23(6):99-106
基于2006-2015年中国31个地区的省级面板数据,利用空间面板模型分析了经济环境、消费者特征、政策等卷烟消费环境因素对卷烟销量的影响。研究表明:总体上,在考察期间内卷烟销量的区域格局从相对分散逐步转向集中均匀分布,存在局部空间相关关系,空间正向溢出效应明显;人均GDP、城镇化率、农村居民人均消费支出、年龄结构等变量对卷烟销量产生显著的正向影响,教育水平、控烟制度等变量对卷烟销量产生显著的负向影响,人均GDP、城镇居民人均消费支出及年龄结构均存在负向空间相关性关系。为此,需要抓住城镇化、美丽乡村建设扩大内需的机遇,以结构和品质提升作为满足卷烟销售发力的关键,净化卷烟销售环境,积极配合烟草控制工作,及早制定适应国家社会经济形势的烟草产业转型发展战略。   相似文献   

12.
This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.  相似文献   

13.
The implications for greenhouse gas emissions of optimizing a slow pyrolysis-based bioenergy system for biochar and energy production rather than solely for energy production were assessed. Scenarios for feedstock production were examined using a life-cycle approach. We considered both purpose grown bioenergy crops (BEC) and the use of crop wastes (CW) as feedstocks. The BEC scenarios involved a change from growing winter wheat to purpose grown miscanthus, switchgrass, and corn as bioenergy crops. The CW scenarios consider both corn stover and winter wheat straw as feedstocks. Our findings show that the avoided emissions are between 2 and 5 times greater when biochar is applied to agricultural land (2--19 Mg CO2 ha(-1) y(-1)) than used solely for fossil energy offsets. 41--64% of these emission reductions are related to the retention of C in biochar, the rest to offsetting fossil fuel use for energy, fertilizer savings, and avoided soil emissions other than CO2. Despite a reduction in energy output of approximately 30% where the slow pyrolysis technology is optimized to produce biochar for land application, the energy produced per unit energy input at 2--7 MJ/MJ is greater than that of comparable technologies such as ethanol from corn. The C emissions per MWh of electricity production range from 91-360 kg CO2 MWh(-1), before accounting for C offset due to the use of biochar are considerably below the lifecycle emissions associated with fossil fuel use for electricity generation (600-900 kg CO2 MWh(-1)). Low-temperature slow pyrolysis offers an energetically efficient strategy for bioenergy production, and the land application of biochar reduces greenhouse emissions to a greater extent than when the biochar is used to offset fossil fuel emissions.  相似文献   

14.
15.
Vehicle self-pollution occurs when a vehicle's emissions migrate to inside that vehicle's passenger compartment. This paper presents values fortwo new parameters: vehicle self-pollution intake fraction (iF(SP)), which is the total fraction of a vehicle's emissions inhaled by all people in the vehicle, and vehicle self-pollution individual intake fraction (iF1SP), which is the fraction of a vehicle's emissions inhaled by an individual in the vehicle. We use results from tracer-gas experiments in California's South Coast Air Basin (SoCAB) to quantify students' iF(SP) and iF1SP for school bus emissions. Six buses were studied during nine runs with windows open and seven runs with windows closed. Reported iF(SP) values (units: per million; min = 10, max = 94, mean = 27) indicate that the total mass of a bus' exhaust inhaled by students commuting on it is comparable in magnitude to the total mass of that bus' exhaust inhaled by all other people in the SoCAB. Reported iF1SP values (units: per million; min = 0.2, max = 2.4, mean = 0.7) indicate that average per capita inhalation of emissions from any single bus is 10(5)-10(6) times greater for a student on that school bus than for a typical resident in the SoCAB. Vehicle self-pollution rate varies with bus window position (open or closed) and bus manufacture year. Our results can be used to develop cost-effective strategies to reduce children's exposure to school bus emissions. Our results indicate, for example, that even if emission reductions were many times more expensive per gram emitted for school buses than for an average vehicle, it would still be less expensive per gram inhaled by a student to reduce emissions from school buses than from an average vehicle.  相似文献   

16.
The transportation of goods plays a significant role in the overall greenhouse gas emissions from consumption. This study investigates the connections between French household consumption and production and transportation-related emissions throughout product supply chains. Here a two-region, environmentally extended input-output model is combined with a novel detailed, physical-unit transportation model to examine the connection between product, location of production, choice of transport mode, and greenhouse gas emissions. Total emissions associated with French household consumption are estimated to be 627 MtCO2e, or 11 tCO2e per capita. Of these, 3% are associated with the transportation of goods within France and 10% with transport of goods outside or into France. We find that most transport originating in northern Europe is by road, whereas most transport from other regions is conducted by sea and ocean transport. Rail, inland water, and air transportation play only a minor role in terms of mass, tonne-kilometers, and greenhouse gas emissions. By product, transport of coal and coke and intermediate goods make the largest contribution to overall freight transport emissions associated with French household consumption. In terms of mass, most goods are transported by road while in terms of tonne-kilometers, sea and ocean transport plays the largest role. Road transport contributes the highest share to the transport of all goods with the exceptions of coal and coke and petroleum. We examine the potential for emissions reductions associated with shifting 10% of direct imports by air freight to sea and ocean or road transport and find that the potential reductions are less than 0.03% of total emissions associated with French consumption. We also consider shifting 10% of direct imports by road transport to rail or inland water and find potential reductions on the order of 0.4?0.5% of the total or 3?4% of the freight transport emissions associated with French consumption. The greatest reductions are achieved by shifting from road transport to rail or inland water for direct imports from northern European countries. This suggests a potential environmental benefit associated with improving rail and inland water infrastructures in Europe.  相似文献   

17.
Reducing greenhouse gas emissions (GHG) is an important social goal to mitigate climate change. A common mitigation paradigm is to consider strategy "wedges" that can be applied to different activities to achieve desired GHG reductions. In this policy analysis piece, we consider a wide range of possible strategies to reduce light-duty vehicle GHG emissions, including fuel and vehicle options, low carbon and renewable power, travel demand management and land use changes. We conclude that no one strategy will be sufficient to meet GHG emissions reduction goals to avoid climate change. However, many of these changes have positive combinatorial effects, so the best strategy is to pursue combinations of transportation GHG reduction strategies to meet reduction goals. Agencies need to broaden their agendas to incorporate such combination in their planning.  相似文献   

18.
Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.  相似文献   

19.
G Ulbricht  M M?hr  I R?ke 《Die Nahrung》1979,23(3):337-351
Per capita consumption indices are reference points essential to the provision of foods and the planning of food consumption. From them global statements regarding the energy and nutrient supply can be deduced. But this requires the exact definition of the per capita consumption indices with regard to the recording level, subitems and average losses. The mode of calculation and the assortment of each of the presented food groups are characterized in detail and estimate values for the occurring losses are indicated which are needed for the nutritional-physiological balancing of the per capita consumption indices.  相似文献   

20.
Relatively little attention has been paid to integrating gaseous N(2)O generated by wastewater treatment into overall reactive nitrogen (Nr) pollution reduction. We propose that there is potential for substantial reductions in N(2)O emissions through the addition of denitrification processes to existing nitrifying wastewater treatment plants (WWTPs), which are designed to lower ammonia levels but currently do not reduce overall Nr. In addition to providing the benefit of reducing total nitrogen concentrations in the effluent, this kind of WWTP upgrade has been demonstrated to reduce energy consumption and fossil CO(2) emissions. We show that the creation of a greenhouse gas (GHG) crediting system for the wastewater sector could provide a potentially sizable economic incentive on the order of $10 million to $600 million per year in the U.S. for upgrading of nitrifying WWTPs that results in N(2)O reductions, with an ancillary benefit of another $30-100 million per year from electricity savings. Even if biological nitrogen removal (BNR) treatment were mandated by existing and future water quality regulations, a GHG crediting system could still be created to promote BNR design and operation that drive N(2)O emissions below a baseline to even lower levels. In this case GHG credits could offset around 0.5-70% of the operating and maintenance cost for the BNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号