首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerium dioxide was prepared by the precipitation method and found to be an efficient photocatalyst to degrade azodyes under visible light irradiation. Nonbiodegradable azodyes acid orange 7 (AO7) was selected as modal target to examine the photocatalytic activity of CeO2. AO7 could be efficiently degraded in aqueous suspension of CeO2 under visible light illumination. The catalyst was characterized by X-ray diffraction (XRD), N2 sorption, transmission electron microscopic image (TEM) and UV/vis absorption spectrum techniques. AO7 solution was quickly decolorized and partly mineralized under visible light irradiation with existing CeO2. The photodegradation rate of this azodye catalyzed by CeO2 is much faster than those occurring on commercial titania (Degussa P25) under otherwise identical conditions of visible light irradiation. Experiments were conducted to examine the adsorption mode of acid orange 7 on CeO2 and adsorption capacity at different pH values. The possible degradation pathway has been proposed for the photocatalytic degradations by using certain radical scavengers and gas chromatography–mass spectrometry (GC–MS) to determine intermediates. The enhanced photoactivity of the lanthanide oxide CeO2 was attributed to the superior adsorption capacity and special 4f electron configuration.  相似文献   

2.
FeTiO3/TiO2, a new heterojunction-type photocatalyst working at visible light, was prepared by a simple sol–gel method. Not only did FeTiO3/TiO2 exhibit greatly enhanced photocatalytic activity in decomposing 2-propanol in gas phase and 4-chlorophenol in aqueous solution, but also it induced efficient mineralization of 2-propanol under visible light irradiation (λ ≥ 420 nm). Furthermore, it showed a good photochemical stability in repeated photocatalytic applications. FeTiO3 showed a profound absorption over the entire visible range, and its valence band (VB) position is close to that of TiO2. The unusually high photocatalytic efficiency of the FeTiO3/TiO2 composite was therefore deduced to be caused by hole transfer between the VB of FeTiO3 and TiO2.  相似文献   

3.
An unreported nanometer TiO2 photocatalyst doped with upconversion luminescence agent (40CdF2 · 60BaF2 · 0.8Er2O3) utilizing visible light was prepared. Its photocatalytic activity was checked through the photocatalytic degradation of acid red B as a model compound under visible light irradiation. Results show that the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights, which can be absorbed by nanometer TiO2 particles to produce the electron-cavity pairs. Therefore, the photocatalytic ability of this novel TiO2 photocatalyst has greatly been enhanced compared with undoped and common TiO2 photocatalyst.  相似文献   

4.
A new visible-light-driven photocatalyst CsLaSrNb2NiO9 based on the 2-D layered perovskite crystal structure was prepared by using the solid-state method. Photocatalytic H2 evolution from the aqueous CH3OH solution was achieved on the photocatalysts CsLaSrNb2NiO9 under UV or visible light irradiation. A possible electronic band structure of CsLaSrNb2NiO9 was proposed in regard to the complicated photocatalytic and photophysic properties.  相似文献   

5.
Sr2TiO4 is a promising photocatalyst for antibiotic degradation in wastewater. The photocatalytic performance of pristine Sr2TiO4 is limited to its wide bandgap, especially under visible light. Doping is an effective strategy to enhance photocatalytic performance. In this work, Nb/N co-doped layered perovskite Sr2TiO4 (Sr2TiO4:N,Nb) with varying percentages (0–5 at%) of Nb were synthesized by sol-gel and calcination. Nb/N co-doping slightly expanded the unit cell of Sr2TiO4. Their photocatalytic performance towards antibiotic (tetracycline) was studied under visible light (λ > 420 nm). When Nb/(Nb + Ti) was 2 at%, Sr2TiO4:N,Nb(2%) shows optimal photocatalytic performance with the 99% degradation after 60 min visible light irradiation, which is higher than pristine Sr2TiO4 (40%). The enhancement in photocatalytic performance is attributed to improving light absorption, and photo-generated charges separation derived from Nb/N co-doping. Sr2TiO4:N,Nb(2%) shows good stability after five cycles photocatalytic degradation reaction. The capture experiments confirm that superoxide radical is the leading active species during the photocatalytic degradation process. Therefore, the Nb/N co-doping in this work could be used as an efficient strategy for perovskite-type semiconductor to realize visible light driving for wastewater treatment.  相似文献   

6.
The photocatalytic oxidation of benzyl alcohol into benzaldehyde proceeded with high conversion and selectivity on a TiO2 photocatalyst by O2 under visible light irradiation. Surface complex formed by the interaction of benzyl alcohol with the Ti sites and/or surface OH groups of TiO2 play an important role in the absorption of visible light and unique selective photocatalytic reaction.  相似文献   

7.
TiO2 particles supported on multi-walled carbon nanotubes (MWCNTs) were prepared using a sol–gel method to investigate their photocatalytic activity under simulated solar irradiation for the degradation of methyl orange (MO) in aqueous solution. The prepared composites were analyzed using XRD, SEM, EDS and UV–vis absorption spectroscopy. The results of this study indicated that there was little difference in the shape and structure of MWCNTs/TiO2 composite and pure TiO2 particles. The composite exhibited enhanced absorption properties in the visible light range compared to pure TiO2. The degradation of MO by MWCNTs/TiO2 composite photocatalysts was investigated under irradiation with simulated solar light. The results of this study indicated that MWCNTs played a significant role in improving photocatalytic performance. Different amounts of MWCNTs had different effects on photodegradation efficiency, and the most efficient MO photodegradation was observed for a 2% MWCNT/TiO2 mass ratio. Photocatalytic reaction kinetics were described using the Langmuir–Hinshelwood (L–H) model. The photocatalyst was reused for eight cycles, and it retained over 95.2% photocatalytic degradation efficiency. Possible decomposition mechanisms were also discussed. The results of this study indicated that photocatalytic reactions with TiO2 particles supported on MWCNTs under simulated solar light irradiation are feasible and effective for degrading organic dye pollutants.  相似文献   

8.
Cu-doped titania photocatalyst supported on silica beads (Cu-TiO2/SiO2) were prepared under different Cu-ion concentration and under different calcination atmosphere. The properties and performance of Cu-TiO2/SiO2 were compared with undoped TiO2/SiO2 photocatalyst. The effect of Cu-doping and calcination atmosphere on photocatalytic degradation of phenol under both black light and visible light irradiation were investigated, where in both cases the degradation rate of phenol by Cu-doped catalyst prepared under reducing calcination atmosphere was found to be higher than the undoped catalyst or Cu-doped catalyst prepared under air atmosphere. This may be attributed to increase in visible light absorption and lengthening of photogenerated electron–hole pair recombination time. The photocatalytic beads were characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and SEM/EDAX analysis.  相似文献   

9.
A novel kind of loaded photocatalyst of TiO2/SiO2/γ‐Fe2O3 (TSF) that can photodegrade effectively organic pollutants in the dispersion system and can be recycled easily by a magnetic field is reported in this paper. The γ‐Fe2O3 cores in TiO2/γ‐Fe2O3 are found to reduce the activity of the TiO2 photocatalyst in the photodegradation of dyes under either UV or visible light irradiation. Addition of a SiO2 membrane between the γ‐Fe2O3 core and the TiO2 shell weakens efficiently the influence of the γ‐Fe2O3 cores on the TiO2 photocatalytic activity and leads to a highly active and magnetically separable photocatalyst on TSF. Comparison of the photodegradation processes of dyes under UV and visible irradiation is also carried out. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A novel visible‐light‐driven photocatalyst of Mo‐doped LiInO2 nanocomposite was successfully synthesized through a sol‐gel method. The effect of Mo‐doping concentrations on the microstructures and properties of LiInO2 was characterized by X‐ray diffraction, scanning electron microscope, X‐ray photoelectron spectroscopy, photoluminescence, and ultraviolet‐visible absorption spectra. The photocatalytic properties of the as‐prepared samples were evaluated by the photocatalytic degradation of methylene blue (MB) dye under visible‐light irradiation. The results demonstrated that the photocatalytic activity of 6% Mo‐LiInO2 reached to 98.6%, which was much higher than that of the undoped photocatalyst LiInO2 (only 46.8%). The enhanced photocatalytic activity is ascribed to Mo‐doping strategy. The holes play an important role in the process of the photodegradation of MB. The superior photocatalytic activity of the as‐prepared Mo‐LiInO2 nanocomposites suggests a potential application for organic dye degradation of wastewater remediation. This work provides a further understanding on tailoring the band structure of semiconductor photocatalyst for enhancing visible‐light absorption and promoting electron‐hole separation by Mo‐doping strategy.  相似文献   

11.
Nanoporous photocatalysts have been designed to exhibit unique photocatalytic activities through framework substitution of titanium species or surface immobilization of rhenium complex onto mesoporous silica. This article summarizes recent work on the synthesis, characterization and photocatalytic activities of the designed porous photocatalysts performed by the present authors. Various spectroscopic investigations revealed that the photo-excited states of these catalysts play a vital role in the photocatalytic reactions and their photocatalytic reactivities are strongly dependent on structures of active sites, which are confined and immobilized in the restricted framework structure of the mesoporous silica. Highly dispersed titanium oxide species incorporated in the framework of mesoporous silica exhibited high and unique photocatalytic reactivity for the reduction of CO2 with H2O to produce CH4 and CH3OH under UV irradiation, its reactivity being much higher than bulk TiO2. The cationic rhenium(I) complex was encapsulated into a mesoporous AlMCM-41 material by ion-exchange method, yielding a visible light photocatalyst to be active for photocatalytic reduction of CO2.  相似文献   

12.
《Ceramics International》2017,43(9):6771-6777
Photocatalytic reduction of carbon dioxide (CO2) into valuable hydrocarbon such as methane (CH4) using water as reducing agent is a good strategy for environment and energy applications. In this study, a facile and simple sol-gel method was employed for the synthesis of metal (Cu and Ag) loaded nanosized N/TiO2 photocatalyst. The prepared photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, BET Surface area analyzer, X-ray photoelectron spectroscopy and UV–vis diffuses reflectance spectroscopy. The photocatalytic conversion of CO2 into methane was carried out under visible light irradiation (λ≥420 nm) by prepared photocatalysts in order to evaluate the photocatalytic efficiency. The results demonstrate that Ag loaded N/TiO2 showed enhanced photocatalytic performance for methane production from CO2 compared to other Cu–N/TiO2, N/TiO2 and TiO2 photocatalysts. The improvement in the photocatalytic activity could be attributed to high specific surface area, extended visible light absorption and suppressed recombination of electron – hole pair due to synergistic effects of silver and nitrogen in the Ag–N/TiO2 photocatalyst. This study demonstrates that Ag–N/TiO2 is a promising photocatalytic material for photocatalytic reduction of CO2 into hydrocarbons under visible light irradiation.  相似文献   

13.
《Ceramics International》2016,42(14):15861-15867
A visible light active photocatalyst, Ag/TiO2/MWCNT was synthesized by loading of Ag nanoparticles onto TiO2/MWCNT nanocomposite. The photocatalytic activity of Ag/TiO2/MWCNT ternary nanocomposite was evaluated for the degradation of methylene blue dye under UV and visible light irradiation. Ag/TiO2/MWCNT ternary nanocomposite exhibits (~9 times) higher photocatalytic activity than TiO2/MWCNT and (~2 times) higher than Ag/TiO2 binary nanocomposites under visible light irradiation. The enhancement in the photocatalytic activity is attributed to the synergistic effect between Ag nanoparticles and MWCNT, which enhance the charge separation efficiency by Schottky barrier formation at Ag/TiO2 interface and role of MWCNT as an electron reservoir. Effect of different scavengers on the degradation of methylene blue dye in the presence of catalyst has been investigated to find the role of photogenerated electrons and holes. Simultaneously, the Ag/TiO2/MWCNT shows excellent photocatalytic stability. This work highlights the importance of Ag/TiO2/MWCNT ternary nanocomposite as highly efficient and stable visible-light-driven photocatalyst for the degradation of organic dyes.  相似文献   

14.
Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UVvis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.  相似文献   

15.
Visible-light-induced BiVO4 photocatalyst has been successfully synthesized via a solution combustion synthesis (SCS) method. The photocatalytic activities of the as-synthesized sample were evaluated by the photodegradation of rhodamine B (RhB) and phenol under visible-light irradiation (λ > 420 nm). The decolorization of high-concentrated RhB (10− 4 M) and the variation of the chemical oxygen demand (COD), demonstrated that the BiVO4 photocatalyst was efficient in aromatic organic compounds degradation. The reduction of total organic carbon (TOC) (about 22.0% after 4.5 h of irradiation) showed that the mineralization of RhB over the BiVO4 photocatalyst is realized. Additionally, much enhanced photocatalytic performance for phenol degradation was also realized with the assistance of appropriate amount of H2O2.  相似文献   

16.
We investigated an S-doped titania nanotube (TNT) loaded with Fe2O3 nanoparticles in order to improve photocatalytic activity of S-doped TNT under visible light irradiation. S-doped TNT was successfully prepared using the solid-phase method at 350 °C under aerated conditions. S-doped TNT showed photoabsorption in the 400–500 nm visible light region and showed photocatalytic activity for oxidation of acetaldehyde under visible light irradiation. Loading of Fe2O3 on S-doped TNT remarkably improved the photocatalytic activity of S-doped TNT. PA spectra measurement, which was performed in order to elucidate the mechanism of activity improvement, showed that the efficiency of charge separation between photoexcited electrons and holes was improved because the electrons were trapped by Fe2O3. Enhancement of photocatalytic activity was strongly dependent on the site of Fe2O3 nanoparticles loaded on TNT. PA spectra measurement showed that the photoexcited electrons transferred to Fe2O3 from S-doped TNT under UV light irradiation or to S-doped TNT from Fe2O3 under visible light irradiation.  相似文献   

17.
《Ceramics International》2017,43(5):3975-3980
The aim of this research is to enhance the photocatalytic activity of TiO2 nanoparticles for the UV–visible light by multiple-doping with Iridium, carbon and nitrogen. The tridoped TiO2 photocatalyst were prepared by wet chemical method, and characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible light diffuse reflection spectroscopy and room temperature photoluminescence spectroscopy. Besides, the photocatalytic H2 evolution performance of Ir-C-N tridoped TiO2 under UV–visible light irradiation was evaluated. It was found that Ir existed as Ir4+ by substituting Ti in the lattice of TiO2; meanwhile, C and N were also incorporated into the surface of TiO2 nanoparticles in interstitial mode. Meanwhile, Ir-C-N tridoping extended the absorption of TiO2 into the visible light region and narrowed its band gap to ~3.0 eV, resulting in enhanced photocatalytic H2 evolution under UV–visible light irradiation. This could be attributed to narrow band gap and proper electronic structure of TiO2 after Ir-C-N tridoping.  相似文献   

18.
Cu2ZnSnS4 nanoparticle with an average diameter of approximately 31 nm has been successfully synthesized by a time effective microwave fabrication method. The crystal structure, surface morphology, and microstructure of the Cu2ZnSnS4 nanoparticle were characterized. Moreover, the visible light photocatalytic ability of the Cu2ZnSnS4 nanoparticle toward degradation of methylene blue (MB) was also studied. About 30% of MB was degraded after 240 min irradiation when employing Cu2ZnSnS4 nanoparticle as a photocatalyst. However, almost all MB was decomposed after 90 min irradiation when introducing a small amount of H2O2 as a co-photocatalyst. The enhancement of the photocatalytic performance was attributed to the synergetic effect between the Cu2ZnSnS4 nanoparticle and H2O2. The detailed photocatalytic degradation mechanism of MB by the Cu2ZnSnS4 was further proposed.  相似文献   

19.
Yao Jun Zhang  Li Zhang 《Desalination》2009,249(3):1017-1021
The CdS/Al-HMS, Pt- and Ru-loaded CdS/Al-HMS photocatalysts were prepared by template, ion exchange and precipitation reaction, and were characterized by N2 adsorption/desorption measurements, X-ray diffraction (XRD), UV-Visible diffuse reflectance spectra (UVDRS), X-ray fluorescence (XRF), transmission electron microscopy (TEM) and fluorescence emission spectra (FES). The result showed that CdS in the form of clusters was highly dispersed inside the channels of Al-HMS. The reaction activities of photocatalysts were examined by photocatalytic degradation of formic acid under visible light irradiation (λ ≥ 420 nm). The photocatalyst, CdS/Al-HMS loaded 0.34 wt.% Pt, showed the highest H2 evolution at a rate of 7.63 mL h− 1 with an apparent quantum yield of 2%.  相似文献   

20.
In order to use the sunlight efficiently, a new titanium dioxide (TiO2) photocatalyst with high catalytic activity under visible light irradiation was prepared with sol–gel technique. In this work, an upconversion luminescence agent, crystallized Er3+:Y3Al5O12, was synthesized and its characters were determined. It is found that this crystallized Er3+:Y3Al5O12 can emit three upconversion fluorescent peaks below 387 nm under the excitation of 488 nm visible light. Hence, this upconversion luminescence agent could transform visible light into ultraviolet light, which could satisfy the genuine requirement of TiO2 photocatalyst. Additionally, the upconverison mechanisms were also discussed. Meanwhile, the prepared TiO2 photocatalysts coating upconversion luminescence agent were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The photocatalytic activity of prepared TiO2 powder was tested through the degradation of congo red in aqueous solution as a model compound under visible and sunlight irradiation. To affirm the complete mineralization, the ion chromatography and total organic carbon (TOC) were used to observe the mineralized anions and organic residues. The experimental results proved that the prepared TiO2 photocatalyst coating crystallized Er3+:Y3Al5O12 behaved much higher photocatalytic activity under visible light and sunlight irradiation, and was able to decompose the congo red in aqueous solution efficiently. Therefore, this method may be envisaged as a novel technology for treating dyes wastewater using solar energy, especially for textile industries in developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号