首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重防腐涂料用水性环氧乳液的制备   总被引:1,自引:0,他引:1  
采用固体双酚A型环氧树脂与高分子量聚醚反应合成水性环氧树脂专用非离子型乳化剂,然后结合相反转技术制备水性环氧乳液。讨论了催化剂三氟化硼乙醚(BF3-乙醚)的用量对环氧树脂CYD011和聚乙二醇PEG6000反应体系环氧值的影响,并利用红外光谱和凝胶渗透色谱对合成乳化剂的结构进行表征,探讨了环氧树脂与PEG6000的摩尔比、乳化剂质量分数、乳化温度及不同分子量的环氧树脂对乳液性能的影响。结果表明,当环氧树脂的环氧当量为450~500,乳化温度为75℃、催化剂用量为0.40%、n(环氧树脂)∶n(PEG6000)=1∶1、乳化剂质量分数为15%时,所制得的水性环氧乳液粒径小于1μm,稳定性高。由此乳液制备的涂料涂膜柔韧性为1mm,冲击强度为50kg·cm,浸泡在质量分数为5%的NaCl溶液中17d完好,耐盐雾480h完好。该乳液可应用于重防腐涂料。  相似文献   

2.
Four polyether and one polyester-modified cationic resins were synthesized by reacting polyether/polyester-modified epoxy resins with 2-ethylhexanol-blocked-toluene diisocyanate (2-EH-blocked TDI) and diethanolamine and subsequently neutralizing the resins with acetic acid. Four different polyethers and one polycaprolactone diol (PCP) were used to react with epoxy resin to form polyether-modified epoxy resins (1a–d) and polyester-modified epoxy resin (1e). The extent of reaction of epoxy resin and polyether or polyester was evaluated by the change of epoxy equivalent weight and the gel permeation chromatography curve of the resulting product. Cationic resins were dissolved in suitable solvents and were mixed with deionized water to form emulsions. Some factors, such as pH value of emulsion, solvent content, and applied voltage affecting the emulsion and electrodeposition properties, were investigated. Cationic resins, prepared from PPG (#1000)-modified epoxy resins, yielded a wider pH range of stable emulsion and also yielded deposited films with a pleasing appearance. PEG (#1000)-modified cationic resins produced a higher deposition yield, but higher throwing power was obtained by deposition of the PCP (#530)-modified cationic resins.  相似文献   

3.
Aniline-modified epoxy resin which contains tertiary amine in the middle of the polymer chain was synthesized by the reaction of aniline and epoxy resin. The resulting aniline-modified epoxy resin and two commercial epoxy resins with different epoxy equivalent weights were reacted with 2-ethylhexanol-blocked toluene diisocyanate (2-EH-blocked TDI) to obtain thermally crosslinkable epoxy resins. These epoxy resins were subsequently reacted with various secondary amines and partially neutralized with acetic acid to give thermally crosslinkable cationic resins. The resulting cationic resins were dissolved in suitable solvents and mixed with deionized water to form emulsions. The crosslinking properties, emulsion, and electrodeposition properties of these resins were studied in some detail. The electro-deposition yields of the emulsions prepared from aniline-modified epoxy resins were higher than those of other emulsions. The crosslinked films prepared from aniline-modified epoxy resins were also glossier than those prepared from commercial epoxy resins. High deposition yield and high glossiness were the characteristic properties of the aniline-modified epoxy resins. Thermal properties were not affected by aniline-modified epoxy resins.  相似文献   

4.
Aniline/benzylamine-modified epoxy resins with different molecular weights, which contain tertiary amines in the middle of the polymer chain, were synthesized by the reaction of aniline/benzylamine with epoxy resin at various molar ratios. The resulting aniline/benzylamine-modified epoxy resins were reacted with diethylamine and subsequently reacted with 2-ethylhexanol-blocked toluene diisocyanate to obtain thermally crosslinkable resins which contain tertiary amines at the end and in the middle of the polymer chain. These resins were partially neutralixed with acetic acid to give thermally crosslinkable cationic resins. The resulting cationic resins were dissolved in suitable solvents and mixed with deionized water to form various emulsions. The emulsion and electrodeposition properties of these resins were studied in some detail to compare the properties of these cationic resins. The results show that the deposition yields and throwing power of the emulsions prepared from benzylaminemodified epoxy resins are higher than those of the emulsions prepared from anilinemodified epoxy resins. The emulsion having proper pH values can give a high throwing power. High throwing power is the characteristic property of these modified cationic resins. Factors determining the throwing power and deposition yield of the emulsions were also investigated.  相似文献   

5.
采用巴陵石化的自乳化性中分子质量水性环氧乳液CYDW-112W50及液体双酚A型环氧树脂CYDW-100与4种胺固化剂配制成4种水性体系,通过对涂膜物理、力学和耐腐蚀性的测试研究了不同固化体系和不同环氧与胺氢的配比对水性体系性能的影响。结果表明:离子型水性环氧体系硬度最高,附着力等比较优异,适合用于底涂或中涂;乳液型水性环氧体系柔韧性能较好,适合用于中涂和面涂;胺氢与环氧基团物质的量比为1.0~1.1∶1时,固化物综合性能最优,据此提出了防腐涂料及改性混凝土的参考配方,产品经性能测试达到使用要求。  相似文献   

6.
利用相对分子质量低的双酚A型环氧树脂、二乙烯三胺和脂肪族环氧化合物合成自乳化环氧树脂乳液和水性固化剂,介绍了乳化剂和固化剂的设计原理。制备了水性环氧树脂涂料,考察了涂料组成对涂料性能的影响。  相似文献   

7.
环氧改性含磷苯丙防锈乳液的合成   总被引:3,自引:0,他引:3  
采用常规乳液聚合方法,以环氧树脂改性含有磷酸酯功能单体的苯丙乳液来制备水性防锈乳液。苯乙烯(St)、丙烯酸丁酯(BA)等为共聚单体,引入环氧树脂及具有抗闪蚀功能的磷酸酯功能单体,考察了乳化剂、引发剂、环氧树脂、磷酸酯单体不同用量对乳液及其漆膜的影响,并对乳液的粒径、固含量及漆膜的耐盐水性、附着力等性能进行测试,逐步优化聚合工艺来合成具有高效防锈的新型环氧防锈乳液。研究表明,乳化剂用量、引发剂用量、环氧树脂用量、磷酸酯单体用量分别为单体总量的1.5%、0.6%、7%、3%时,可制得性能较好的水性环氧改性含磷苯丙防锈乳液。  相似文献   

8.
以丙烯酸酯类为主要单体,环氧树脂和有机硅大分子乳液为改性剂,R303为主要乳化剂,通过乳液聚合方法合成了耐指纹涂料用聚合物乳液成膜物,讨论了乳化剂、环氧树脂和有机硅对乳液及涂膜性能的影响。结果表明,采用阳/非离子复合乳化体系可以制得酸性环境下使用的聚合物乳液,涂膜烘烤过程中活泼的环氧基团与其它基团的交联会大幅度提高涂膜的耐腐蚀性和硬度,有机硅参与聚和后会进一步改善涂层的耐水耐腐蚀性,当m(R303)∶m(OP-10)为3∶1,E-51质量分数为10%,乙烯基有机硅乳液质量分数为5%时,合成的乳液成膜物有较好的综合性能。  相似文献   

9.
以液态环氧树脂E-51和乙二胺为原料,成功制得一种水性环氧固化剂,并用冰醋酸中和成盐。通过控制冰醋酸的加量,调节产物的亲水亲油值,使其能与自制的水性环氧树脂乳液复配制备环氧树脂涂料;并研究了固化剂与乳液的相容性。采用FT-IR、 1H-NMR、环氧值表征固化剂结构。测试了涂膜的动态力学性能、热力学性能、平衡吸水率、耐酸碱性、铅笔硬度等。结果表明:当中和度为50%时,涂膜的力学性能、耐水性、耐酸碱性、硬度均较好。  相似文献   

10.
纳米SiO_2对酚醛环氧树脂改性研究   总被引:1,自引:1,他引:1  
以双酚A及甲醛为基本原料,加入纳米SiO2制备了纳米氧化硅改性酚醛树脂预聚体,其与环氧树脂继续共聚得到纳米氧化硅改性酚醛环氧树脂。通过红外光谱、粒径分布仪、X射线衍射、扫描电镜分析及涂膜性能测试对产物进行了研究和表征。结果表明,纳米氧化硅均匀分布在共聚物中,说明纳米氧化硅中的羟基参与了酚醛的共聚;纳米SiO2的加入对酚醛环氧树脂的结构无太大影响。与未改性醛醛环氧树脂比较,纳米SiO2的加入可有效提高涂层的耐水煮、黄变、硬度、吸水率及耐盐水腐蚀性。  相似文献   

11.
采用二乙醇胺部分开环双酚A型环氧树脂利用化学水性的方法制备了一系列具有良好水分散性能的自乳化水性环氧树脂乳液.研究了二乙醇胺/环氧基摩尔比值(理论开环量)对水性环氧树脂乳液各项物理性能的影响;通过紫外-可见光谱测试了乳液的光学透明性,通过红外谱图(FT-IR)表征了所制备的水性环氧树脂的结构.结果表明,当环氧树脂中环氧...  相似文献   

12.
A novel manufacturing process for high performance metallic can coating was carried out based on an epoxy‐grafted acrylic resin. Firstly, the epoxy resin was reacted with acrylic amide forming a ring opened product epoxy‐amide resin, and then the product obtained copolymerized with all other monomers, such as acrylic acid (AA), butyl acrylate (BA), hydroxypropyl acrylate (HPA), 2‐ethylhexyl acrylate (2‐EHA), methyl methacrylate (MMA), styrene (St), using free radical solvent polymerization in the presence of BPO. The resins prepared present the transparent appearance, and the target resin coating based on these resins exhibits excellent boiling resistance and chemicals resistance and can be applied as the protective coating for metallic can. The effects on the coating properties, such as amount of acrylic acid, 2‐EHA wt % between 2‐EHA and BA, amount of amino resin, amount of catalyst, and so forth, were investigated. In addition, the influences of polymerization time on the conversion ratio of monomers were also studied. Results show that under the optimal conditions, the target resin coating provides excellent physical and mechanical properties. The various properties tests for this coating have been performed in accordance with the standards of ASTM. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Self‐emulsified water‐borne epoxy curing agent of nonionic type was prepared using triethylene tetramine (TETA) and derivative of epoxy resin as a capping agent, which was synthesized by liquid epoxy resin (E51) and polyethylene glycol (PEG), and the curing agent possessed emulsification and curing properties at the same time. The curing agent with good property of emulsifying liquid epoxy resin could be obtained under the condition of the molar ratio of PEG : E51 : TETA as 0.8 : 1 : 3.5 at 80°C for 5 h. The mean particle size of the emulsion liquid was about 220 nm with the prepared curing agent and epoxy resin at the mass ratio of 1 : 3. The structure of the emulsion‐type curing agent was confirmed by FTIR and 1H NMR spectra, and the mechanism of cured film formation was also analyzed by SEM photographs. The cured film prepared by the emulsion‐type curing agent and epoxy resin under ambient cure conditions showed good properties even at high staving temperature. This study provides useful suggestions for the application of the water‐borne epoxy resins in coating industry. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2652–2659, 2013  相似文献   

14.
高沸醇木质素环氧树脂的合成与性能研究   总被引:2,自引:2,他引:2  
利用高沸醇木质素的化学活性,直接与环氧氯丙烷反应,生成木质素环氧树脂和木质素改性双酚A型环氧树脂,用环氧值、红外光谱、TGA和DSC等对树脂进行表征,并与未改性的双酚A型环氧树脂进行对比。结果表明,高沸醇木质素很容易合成木质素环氧树脂,其最佳合成条件是:n(ECH)∶n(-OH)=8,温度55~60℃,碱浓度为5%;高沸醇木质素环氧树脂能显著提高环氧树脂的耐溶剂性和耐热性。  相似文献   

15.
用环氧树脂以及丙烯酸酯单体通过乳液聚合制备了具有核壳结构的共聚物乳液。讨论了主要因素对乳液稳定性及产品性能的影响.结果表明,核壳型乳液最佳的合成条件是引发剂用量为0.4%、复合乳化剂的用量为4%、环氧树脂的用量为2%、核壳质量比为1/2.玻璃化温度分别为-30℃及-15℃,焙烘条件为140℃/5min.作为印花胶粘剂其弹性、手感、牢度等性能指标均达到了设计要求.  相似文献   

16.
采用单体预乳化、种子乳液聚合法,以甲基丙烯酸甲酯、苯乙烯为硬单体,丙烯酸丁酯为软单体,以环氧树脂改性,制备了稳定性强、吸水率低的环氧改性苯丙乳液,并将其作为成膜剂,制备了水性锈转化涂料.考察了乳化剂、引发剂、单体和环氧树脂用量对乳液性能的影响,得到的最优用量为:乳化剂1.00%,引发剂0.25%,单体47.50%,环氧...  相似文献   

17.
环氧改性丙烯酸乳胶防锈涂料   总被引:2,自引:0,他引:2  
以环氧E—51与St、BA、MAA、N—MA等单体经乳液聚合方法制成环氧改性丙烯酸乳液,用于防锈涂料。讨论了环氧树脂对乳液的成膜性能、各种稳定性及涂料耐腐蚀等性能的影响。  相似文献   

18.
提供了一种制备改性环氧树脂乳液的新方法,以丙烯酸酯类为聚合性单体,加入环氧树脂,利用乳液聚合方法制成了环氧树脂含量达50%的丙烯酸酯改性环氧树脂乳液。通过测试交联度,证明环氧树脂确实参与了聚合反应。同时,还对乳化剂、功能性单体以及环氧树脂含量对乳液稳定性、产品收率、吸水性以及各项力学性能的影响问题进行了研究,得出:丙烯酸对环氧树脂的聚合交联起到了决定性的作用,丙烯酰胺的引入大大提高了乳液的稳定性和力学性能,环氧树脂含量越多产品性能越接近纯环氧树脂,聚合应采用阴、非离子复合乳化剂。  相似文献   

19.
马来海松酸类环氧树脂化学结构研究   总被引:3,自引:0,他引:3  
本文利用FT—IR、~(13)C-NMR光谱法和化学分析法分析了三种马来海松酸类环氧树脂的存在基团及质量指标;并通过VPO法测定了此类环氧树脂的数均分子量和聚合度;探讨了合成反应条件对环氧树脂化学结构的影响。  相似文献   

20.
A novel hyperbranched polyphosphate ester (HPE) was synthesized via the polycondensation of bisphenol-A and phosphoryl trichloride. The formed HPE was characterized by FTIR, 1H NMR and 31P NMR to confirm its structure. Then, a series flame retardant epoxy resins from bisphenol-A epoxy cured with HPE and bisphenol-A were prepared. The combustion behavior of the flame retardant epoxy resins was studied using limiting oxygen index (LOI) and cone calorimeter test. The LOI value increased from 23 to 32 when HPE, instead of bisphenol-A, was used as a curing agent. The cone calorimeter test data revealed that the cured bisphenol-A epoxy resin with HPE as a curing agent possessed improved flame retardancy. The photo graphs and scanning electron microscopy (SEM) of char residues confirmed the cone calorimeter results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号