首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为揭示基体表面粗糙度对MoS_(2)/Ti固体润滑薄膜摩擦磨损性能的影响规律,并探究其摩擦磨损机理,采用磁控溅射方法,在不同表面粗糙度的轴承钢基体上沉积MoS_(2)/Ti薄膜。通过划痕测试仪、X射线衍射仪、场发射扫描电子显微镜和粗糙度轮廓仪,分别评价MoS_(2)/Ti薄膜的膜基结合力、物相成分、表面微观形貌以及表面粗糙度,并采用球-盘摩擦磨损实验研究干摩擦、固体-油复合润滑和固体-脂复合润滑条件下,MoS_(2)/Ti薄膜的摩擦磨损性能。结果表明:随着基体表面粗糙度的增加,MoS_(2)/Ti薄膜的表面粗糙度逐渐增加;薄膜中(002)_(MoS_(2))和(100)_(MoS_(2))衍射峰的强度先减弱后增加;薄膜与基体的结合性能降低。当基体表面粗糙度为0.01μm时,干摩擦条件下MoS_(2)/Ti薄膜具有良好的润滑特性,平均摩擦因数为0.101,磨痕浅且小;随基体粗糙度的升高,样品的平均摩擦因数和磨损率均是先增大后减小,薄膜的主要磨损机制由磨粒磨损转变为屑片形成和破碎。当基体粗糙度较大时(R_(a)=0.26μm),分子间相互作用的影响大于机械啮合作用。采用固体-油复合润滑,高基体粗糙度的薄膜磨损表面不再出现片层剥落现象,磨痕较浅,平均摩擦因数最高可减小19%。固体-脂复合润滑条件下,样品摩擦磨损性能较差,基体粗糙度对摩擦因数的影响不显著。  相似文献   

2.
微波ECR等离子体源增强非平衡磁控溅射DLC膜的制备与表征   总被引:1,自引:1,他引:0  
李新  唐祯安  邓新绿  徐军  张虹霞  杨梅 《功能材料》2004,35(3):304-305,307
介绍了微波ECR等离子体源增强非平衡磁控溅射设备的结构和工作原理,详细叙述了利用该设备制备类金刚石膜的过程。Raman光谱证实了薄膜的类金刚石特性;采用原子力显微镜(AFM)观察薄膜的微观表面形貌,均方根粗糙度大约为1.9nm,结果表明薄膜表面非常光滑;利用CERT微摩擦计进行摩擦、磨损和划痕实验,薄膜的平均摩擦系数较小,大约为0.175;DLC膜和Si衬底磨损情况的扫描电镜图片相对比,可以看到DLC膜的磨痕小的多,说明薄膜有较好的耐磨性能;划痕测试结果表明制备薄膜临界载荷大约为40mN。  相似文献   

3.
W.H. Kao  Y.L. Su 《Vacuum》2006,80(6):604-614
This study investigates the tribological properties and cutting performance of Ti-DLC and Cr-DLC doped metal coatings. The tribological properties of the coatings are evaluated by testing coated disks against an AISI 1045 steel counterbody under dry conditions using an oscillating friction wear tester, and then measuring the subsequent wear depth on the coated disk, the wear width on the steel counterbody, and the friction coefficient. The cutting performance of the coatings is evaluated by using coated high-speed drills to machine stainless steel workpieces, and then measuring the resulting flank wear and hole surface roughness. The results of the wear tests show that the Ti-C:H and Ti-C:H/TiC/TiCN/TiN coatings possess excellent tribological properties, including low coefficients of friction, low wear depths, and low wear widths. Regarding the machining tests, the Ti-C:H/TiC/TiCN/TiN coating has the lowest flank wear and yields the highest hole surface quality under both dry and cutting fluid drilling conditions. The single Ti-C:H coating has excellent tribological properties, but demonstrates a relatively poorer performance in the drilling of stainless steel. Finally, the Cr-DLC coatings all exhibit a poor cutting performance under dry cutting conditions.  相似文献   

4.
用于微机电系统的类金刚石膜制备及表征   总被引:3,自引:0,他引:3  
采用等离子体源离子注入和电子回旋共振-微波等离子体辅助化学气相沉积技术相结合的方法在Si衬底上制备出了性能良好的类金刚石膜.通过共聚焦Raman光谱验证了薄膜的类金刚石特性,用原子力显微镜、微摩擦计和扫描电镜等对薄膜的表面形貌、摩擦系数和耐磨损性能进行了表征和测量.结果表明,用离子注入法制备过渡层大大提高了DLC膜与衬底的结合强度,薄膜的表面比较光滑,粗糙度大约为0.198 nm,具有较低的摩擦系数(0.1~0.15),具有较好的耐磨损性能.  相似文献   

5.
目前,关于N_2∶O_2流量比如何影响Cr-O-N涂层结构和性能的报道较少。采用多弧离子镀技术在硅片(100)和硬质合金基底上沉积了一系列不同N_2∶O_2流量比的Cr-O-N复合涂层;采用X射线衍射仪分析涂层晶体结构;采用共聚焦显微拉曼光谱仪分析薄膜氧化物相结构;采用扫描电镜观察涂层形貌,并通过能谱仪分析其成分;利用原子力显微镜观察涂层表面三维形貌;采用显微硬度仪测量涂层硬度;通过球-盘摩擦磨损仪测量涂层摩擦磨损性能,系统地研究了O_2流量占比对复合涂层结构和性能的影响。结果表明:Cr-O-N复合涂层由CrN和Cr_2O_3复合相组成;随着沉积过程中O_2流量占比的增加,涂层中N和Cr的含量呈下降趋势,而Cr_2O_3含量逐渐增加;随着O_2流量占比的增加,涂层表面形貌发生变化,涂层表面粗糙度在氧气占比为0.34时达到最大值85.86 nm,此时涂层具有最低的摩擦系数0.48;Cr-O-N涂层的硬度高于CrN和Cr_2O_3涂层,摩擦系数比CrN涂层高,但低于Cr_2O_3涂层。  相似文献   

6.
弹性金属塑料轴承材料的摩擦磨损特性   总被引:1,自引:0,他引:1  
用MM-200摩擦磨损试验机,对含有填充料的PTFE为瓦面、青铜丝为弹性层的弹性金属塑料(EMP)轴承材料在30号透平油润滑时的摩擦磨损特性进行了研究,通过称重法、表面原始粗糙度、磨损微粒分析技术及扫描电镜对其摩擦学性能进行了初步探讨。结果表明,油润滑时,含填充料弹性金属型料轴承材料的磨损量随负荷、对偶面表面原始粗糙度值增大而增加,但比纯PTFE材料的磨损量低。  相似文献   

7.
采用高功率脉冲磁控溅射与脉冲直流磁控溅射复合镀膜技术制备AlCrSiN/Mo自润滑涂层,通过真空退火处理改善其结构和性能。利用扫描电镜、X射线衍射仪、电子探针分析仪、纳米压痕仪、划痕测试仪及摩擦磨损试验机,系统研究真空退火温度对涂层组织结构、力学性能及耐磨性能的影响。结果表明:所有AlCrSiN/Mo涂层均是a-Si3N4非晶相包裹nc-(Al,Cr,Mo)N的纳米复合结构。经真空退火后,涂层表面颗粒尺寸明显增大,对应纳米硬度与临界载荷均出现下降,而耐磨和减摩性能得到显著改善。当退火温度为700℃时,涂层的综合性能最佳,纳米硬度为18.3GPa、摩擦因数为0.51、磨损率为3.4×10^-4μm^3·(N·μm)^-1,此时特征值H/E和H3/E*2亦最高。  相似文献   

8.
Hu Pengfei  Jiang Bailing 《Vacuum》2011,85(11):994-998
The influence of carbon doping on tribological properties of CrCN coating was studied through preparation of coatings deposited on single crystal silicon and M2 high-speed steel (HSS) substrate using closed-field unbalanced magnetron sputtering ion plating technique. The friction coefficients were measured by pin-on-disc set-up and the wear traces of the coatings were observed by optical microscope. The microstructure and bond states of the coatings were characterized by atomic force microscope (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the friction coefficient of coating decreases from 0.75 to 0.38, the micro-hardness increases from 1930 HV to 2300 HV, and the specific wear ratio of the coatings decreases from 8.351 × 10−15 m3/Nm to 3.859 × 10−15 m3/Nm with the increasing of carbon target current (IC) from 0 A to 1.5 A. The grain size and the roughness of the coatings both decrease with the increasing of carbon target current, at the same time the coatings transform from crystalline state to amorphous state.  相似文献   

9.
MoSx coatings were prepared by bipolar-pulse DC unbalanced magnetron-sputtering system with the variation of coating thickness at different Ar pressures.The composition and surface morphology were determined by using energy dispersive X-ray and scanning electron microscopy;the structural characterization was analyzed by X-ray diffraction.The friction and wear properties were investigated by fretting tests in air with less than 10% and 50% relative humidity.At 0.40 Pa pressure,(002) basal plane orientation was formed throughout the coatings.At 0.88 Pa and 1.60 Pa pressures,(002) basal plane orientation was only noticed in the first stage of coating growth(around 0.20 μm in thickness), and then edge orientations with their basal planes perpendicular to the surface would be evolved in the coatings.Humidity has a minor influence on the coatings that have(002) basal plane orientation,whereas the tribological properties of MoSx coatings with edge orientations are greatly affected by humidity.The mechanisms of coating growth and friction and wear processes are discussed.  相似文献   

10.
A closed field unbalanced magnetron (CFUBM) sputtering system is used to deposit Zr-C:H:Nx% coatings with nitrogen contents ranging from 0 to 29 at.% on AISI M2 steel disks. The microstructures of the various coatings are analyzed using Raman spectrometry, while the hardness and adhesion strength are measured via nanoindentation tests and scratch tests, respectively. The tribological properties of the coatings are tested against AISI 52100 steel balls under loads of 0.5-10 N using a ball-on-disk wear tester. The wear testing results reveal that the Zr-C:H:N12% coating has excellent tribological properties, including a low wear depth, a low friction coefficient and an extended lifetime.  相似文献   

11.
Nanotribology and nanomechanics studies are needed to develop fundamental understanding of interfacial phenomena on a small scale and to study interfacial phenomena in magnetic storage devices, nanotechnology and other applications. Friction and wear of lightly loaded micro/nanocomponents are highly dependent on the surface interactions (a few atomic layers). These structures are generally coated with molecularly thin films. Nanotribology and nanomechanics studies are also valuable in the fundamental understanding of interfacial phenomena in macrostructures and provide a bridge between science and engineering. An atomic force microscope (AFM) tip is used to simulate a single-asperity contact with a solid or lubricated surface. AFMs are used to study the various tribological phenomena that include surface roughness, adhesion, friction, scratching, wear and boundary lubrication. In situ surface characterization of local deformation of materials and thin coatings can be carried out using a tensile stage inside an AFM. Mechanical properties such as hardness, Young's modulus of elasticity and creep/relaxation behaviour can be determined on micro- to picoscales using a depth-sensing indentation system in an AFM.  相似文献   

12.
硅掺杂类金刚石薄膜表面性能研究   总被引:1,自引:0,他引:1  
本文使用原子力显微镜考察了硅掺杂类金刚石薄膜的表面形貌及粗糙度,同时分析了薄膜表面的粘附力和微观摩擦力学性能。实验表明,随着基底负偏压的增加,薄膜的表面粗糙度值逐渐减小;摩擦力和外加载荷成线性关系,且粘附力是微小载荷下影响固体滑动摩擦力的主要因素,并采用最佳拟合直线的斜率表征出样品的摩擦系数的大小。  相似文献   

13.
Mechanical and analytical tools were used to characterize the coatings on a magnetic recording disk. The mechanical and tribological properties of the coating were evaluated using the nano-indentation and nano-scratch tests. The transmission electron microscopy (TEM) and the Auger electron spectroscopy (AES) were used to determine the thickness and elemental compositions of the coating layers, while the atomic force microscopy (AFM) was used to study the surface topology and roughness. It was shown that the disk surface had a texture preferentially oriented along the circumferential direction with fairly uniform summit height and little waviness. The variations of surface roughness data were analyzed statistically, based on the Gaussian probability and Weibull cumulative probability theories. The coefficient of friction and the surface roughness were found to depend on scan direction relative to the coating texture. The hardness and elastic modulus were strongly influenced by the coating/substrate interaction and the surface roughness of the coating.  相似文献   

14.
采用磁控溅射技术在Ti6Al4V钛合金表面制备了Ta_2O_5/Ta_2O_5-Ti/Ti多层涂层;利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱仪 (XPS),分析了涂层的微观结构、物性组成和化学价态;通过划痕仪、纳米压痕仪、摩擦磨损试验机和电化学工作站,检测了涂层的结合强度、力学性能、摩擦系数和耐腐蚀性。研究结果表明,Ta_2O_5/Ta_2O_5-Ti/Ti多层涂层表面由峰型颗粒组成,粒径大小均匀,涂层结构致密。与Ti6Al4V相比,Ta_2O_5/Ta_2O_5-Ti/Ti多层涂层试样具有较小的摩擦系数,较高的腐蚀电位和较小的腐蚀电流密度,表现出良好的耐磨和耐腐蚀性能,能对Ti6Al4V合金植入材料起到较好的保护作用。  相似文献   

15.
采用小分子柠檬酸钠对金纳米粒子进行包覆改性,紫外光谱分析经改性的金纳米粒子表面共振吸收峰为526iun,激光纳米粒度仪分析表明其平均粒径为8.4nm.改性后的金纳米粒子通过分子沉积技术,与聚二烯丙基二甲基胺盐酸盐(PDDA)组装,制得单层和多层PDDA/Au NPs复合纳米粒子分子沉积(MD)膜(简称PDDA/Au NPs复合MD膜).采用原子力显微镜(AFM)研究了PDDA/Au NPs复合MD膜的表面形貌以及摩擦、磨损行为.研究结果表明:该复合膜能降低基底的摩擦力,其中以3层膜降低摩擦力的效果最显著.在氮化硅探针扫描行程达到30次后,膜表面才开始出现磨损痕迹.随着扫描次数的增多,膜表面在探针剪切力的作用下逐渐由致密变得疏松,形成颗粒堆积,使表面粗糙度增大,摩擦力、磨损深度也随之增加.通过实验还发现这种复合膜存在两种非正常磨损现象,即磨损负增长和膜的脱落现象.  相似文献   

16.
This work comprises a study of the deposition and characterization of TiN coatings of different thicknesses on AISI M2 substrates heat-treated to different hardnesses. The effect of both substrate hardness and coating thickness on coating tribological performance was evaluated. The characterization tests included surface roughness measurement, coating thickness, micro-hardness, scratch adhesion, pin on disc, impact and corrosion tests. New findings on the impact wear behavior of TiN tempered M2 substrates were highlighted. For example, using a thin coating and tempering the substrate at 650°C to slightly reduce the substrate hardness gave improved impact wear resistance. A maximum surface composite hardness value was obtained at 'full' substrate hardening (i.e. non-tempered) and the maximum TiN coating thickness as expected. The maximum critical load (79.2 N), in scratch adhesion tests was obtained from the fully hardened substrate with minimum TiN coating thickness. The results from corrosion tests show that tempering has an adverse effect on corrosion resistance.  相似文献   

17.
采用溶胶-凝胶法,将不同含量的正硅酸乙酯(TEOS)与r-缩水甘油醚基丙基三甲基硅烷(GPMS)共水解缩合,所得终产物为有机-无机纳米杂化材料,用浸渍法使其在玻璃基体上成膜,并利用扫描探针电镜(SPM)对膜的形貌进行了表征.通过MTS Nano Indenter XP纳米压痕仪研究了TEOS的含量对杂化体系摩擦性能的影响.结果表明,环氧基倍半硅氧烷杂化膜在TEOS含量为5%时表面粗糙度最小、弹性恢复能力最大,TEOS含量为10%时摩擦系数最小.  相似文献   

18.
Abrasive wear of nitrocarburized steels Diffusion coatings have been used increasingly to improve surface properties of several machine components for tribological applications. In this investigation, the abrasive wear of various diffusion coatings has been studied. These coatings developed by three different nitrocarburizing processes, namely salt-bath, gas and plasma nitrocarburizing, were conducted on five various steel substrates. The substrates were St 52-3, Ck 45, 42 CrMo 4, 30 CrNiMo 8 and X 20 Cr 13. The thickness of the compound layers and their porosity were measured using optical microscopy. The structure of compound layers was characterized using an X-ray diffractometer, and their surface roughness by a stylus profilometer. The surface hardness measurements and the hardness profile were made according to the Vickers principle. The abrasion test was carried out using a pin-on-table machine. The predominant wear mechanisms have been evaluated using scanning electron microscopy. It was found that the employed nitrocarburizing processes have improved the abrasive wear resistance of all tested coating-substrate-combinations. In general, the abrasive wear rate decreases with an increase in the hardness of the compound layer as well as its thickness. The best coating-substrate-combinations to improve abrasion resistance were salt-bath and gas nitrocarburized specimens of the substrate X 20 Cr 13. Plasma nitrocarburized specimens of the substrate St 52-3 and Ck 45 were the worst.  相似文献   

19.
Hydrogenated carbon nitride (a-CN x H films) was deposited on n-type single-crystal Si (100) by direct current radio frequency plasma-enhanced chemical vapor deposition (DC-RF-PECVD), under the working pressure of 5.0–17.0 Pa, using the CH4 and N2 as feedstock. The composition and surface morphology of the a-CN x H films were characterized by means of Raman spectroscopy and atomic force microscopy, while the Young’s modulus, elastic recovery, adhesion strength, and tribological properties were evaluated using nano-indentation, scratch test and friction test system. It was found that the surface roughness and Raman spectra peak intensity ratio I D/I G of the films increased with the increase of working pressure, while the Young’s modulus, elastic recovery and adhesion strength of the films significantly decreased. Moreover, the tribological properties of the films also varied with the working pressure. The wear life sharply increased with the increase of working pressure from 5.0 Pa to 7.5 Pa, further, an increase in the deposition pressure led to a gradual decrease in the wear life, consequently, the a-CN x H film deposited at 7.5 Pa exhibited the longest wear life. The deposition pressure seemed to have slight effect on the average friction coefficients, whereas the surface roughness and adhesion strength have deteriorated with increasing deposition pressure.  相似文献   

20.
桂王林  陈吉  崔霄  刘强 《材料保护》2018,(2):1-4,13
为了探究Ni-WC/Co纳米复合镀层对材料表面摩擦学性能的影响,采用脉冲电沉积制备出Ni-WC/Co纳米复合镀层,研究镀液中WC/Co含量对复合镀层晶体结构、晶粒尺寸和硬度的影响;室温下,在MM-W1B立式万能摩擦磨损试验机上测试复合镀层的摩擦学性能,分析其磨损机理。结果表明:随着镀液中加入WC/Co颗粒含量的增加,复合镀层平均晶粒尺寸先减小后增大,硬度则是先增大后减小,镀层的摩擦系数和磨损速率都是先降低后升高;当WC/Co含量为30.0 g/L时,复合镀层的平均晶粒尺寸最小,硬度最高,摩擦系数和磨损速率最低,耐磨性能最佳,复合镀层表面只呈现出轻微划痕,是由磨料磨损造成的,没有犁削和黏着磨损的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号