首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-quality Cd1−xMnxTe polycrystalline films with (1 1 1) preferred orientation were deposited by close-spaced sublimation (CSS) method. The XRD and optical absorption analysis indicated that the band gap of the film was about 1.6 eV. The as-grown Cd1−xMnxTe films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. The effect of various post-deposition treatments with vapors of chlorine-containing materials (CdCl2 and/or MnCl2), in Ar or H2/Ar ambient, on the properties of Cd1−xMnxTe cells was studied.  相似文献   

2.
ZnO and Zn1−xCdxO nanocrystallites were prepared by oxidation of zinc arachidate-arachidic acid and zinc arachidate-cadmium arachidate-arachidic acid LB multilayers, respectively. The metal content of the multilayers was controlled by manipulation of subphase composition and pH. Precursor multilayers were oxidized in the temperature range of 400 °C-700 °C. The formation of ZnO and Zn1−xCdxO was confirmed by UV-Visible spectroscopy. Uniformly distributed, isolated and nearly mono-dispersed nanocrystallites of ZnO (11 ± 3 nm) and Zn1−xCdxO (18 ± 6 nm) were obtained.  相似文献   

3.
Cd(1 − x)ZnxS thin films have been grown on glass substrates by the spray pyrolysis method using CdCl2 (0.05 M), ZnCl2 (0.05 M) and H2NCSNH2 (0.05 M) solutions and a substrate temperature of 260 °C. The energy band gap, which depends on the mole fraction × in the spray solution used for preparing the Cd(1 − x)ZnxS thin films, was determined. The energy band gaps of CdS and ZnS were determined from absorbance measurements in the visible range as 2.445 eV and 3.75 eV, respectively, using Tauc theory. On the other hand, the values calculated using Elliott-Toyozawa theory were 2.486 eV and 3.87 eV, respectively. The exciton binding energies of Cd0.8Zn0.2S and ZnS determined using Elliott-Toyozawa theory were 38 meV and 40 meV, respectively. X-ray diffraction results showed that the Cd(1 − x)ZnxS thin films formed were polycrystalline with hexagonal grain structure. Atomic force microscopy studies showed that the surface roughness of the Cd(1 − x)ZnxS thin films was about 50 nm. Grain sizes of the Cd(1 − x)ZnxS thin films varied between 100 and 760 nm.  相似文献   

4.
Zn1 − xMgxO thin films of various Mg compositions were deposited on quartz substrates using inexpensive ultrasonic spray pyrolysis technique. The influence of varying Mg composition and substrate temperature on structural, electrical and optical properties of Zn1 − xMgxO films were systematically investigated. The structural transition from hexagonal to cubic phase has been observed for Mg content greater than 70 mol%. AFM images of the Zn1 − xMgxO films (x = 0.3) deposited at optimized substrate temperature clearly reveals the formation of nanorods of hexagonal Zn1 − xMgxO. The variation of the cation-anion bond length to Mg content shows that the lattice constant of the hexagonal Zn1 − xMgxO decreases with corresponding increase in Mg content, which result in structure gradually deviating from wurtzite structure. The tuning of the band gap was obtained from 3.58 to 6.16 eV with corresponding increase in Mg content. The photoluminescence results also revealed the shift in ultraviolet peak position towards the higher energy side.  相似文献   

5.
The optical and electrical properties of vapour phase grown crystals of diluted magnetic semiconductor Zn1 − xCrxTe were investigated for 0 ≤ x ≤ 0.005. The diffuse reflectance spectra exhibited an increase in the fundamental absorption edge (E0) with composition x and were also dominated by a broad absorption band around 5200 cm− 1 arising from 5T2 → 5E transition. The 5T2 and 5E levels originate from the crystal field splitting of the 5D free ion in the ground state. The electrical resistivity measurements revealed semiconducting behaviour of the samples with p-type conductivity in the temperature range of 200-450 K.  相似文献   

6.
MgxZn1−xO films were deposited onto the glass substrate by a sol-gel spin coating method. The drying and annealing temperatures were 300 and 500 °C in air. As x varies from 0 to 1, it was observed that the crystal structure is changed from wurtzite ZnO to cubic MgO. The morphology characterizations of these films were observed by scanning electron microscope. The randomly oriented hexagonal nanorods were gown on the glass surface when x = 0 and 0.25, which became disappeared with increasing Mg contents. The optical properties of these films were investigated by room-temperature photoluminescence (PL) and UV-vis absorption spectra, which show that the optical band gap and photoluminescence in the visible and UV regions can be ideally tuned by varying the Mg contents in the MgxZn1−xO alloy films.  相似文献   

7.
Transparent semiconductor thin films of Zn1 − xTixO (0 ≦ x ≦ 0.12) were deposited on alkali-free glass substrates by the sol-gel method. The effects of Ti addition on the crystallization, microstructure, optical properties and resistivity of ZnO thin films were investigated. The as-coated films were preheated at 300 °C, and then annealed at 500 °C in air ambiance. X-ray diffraction results showed all polycrystalline Zn1  xTixO thin films with preferred orientation along the (002) plane. Ti incorporated within the ZnO thin films not only decreased surface roughness but also increased optical transmittance and electrical resistivity. In the present study, the Zn0.88Ti0.12O film exhibited the best properties, namely an average transmittance of 91.0% (an increase of ~ 12% over the pure ZnO film) and an RMS roughness value of 1.04 nm.  相似文献   

8.
Cd1 − xZnxTe films were prepared by radio frequency (r.f.) magnetron sputtering from Cd0.9Zn0.1Te slices target with different sputtering power (60-120 W). The effects of sputtering power on the properties of Cd1 − xZnxTe films were studied using X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. The composition of the deposited films was determined by EDX. The Cd content was found always to be higher than the Te content, regardless of sputtering power. This behavior may be explained by the preferential sputtering of cadmium atoms in the target. XRD studies suggest that ZnTe secondary phases were coexisted in Cd1 − xZnxTe films. The origin of the secondary phase is ascribed to the lowest sticking coefficient of Zn atom. AFM micrographs show that the grain size increases with the sputtering power. The optical transmission data indicate that shallow absorption edge occurs in the range of 750-850 nm, and the sputtering power does not have a clear effect on the optical absorption coefficient. In Hall Effect measurements, the sheet resistivities of the deposited films are 1.988 × 108, 8.134 × 107, 8.088 × 107 and 3.069 × 107 Ω/sq, respectively, which increase with the increasing of sputtering power.  相似文献   

9.
Xiaofei Han  Zhude Xu 《Thin solid films》2009,517(19):5653-989
Cd1 − xZnxO nanocrystalline thin films with rock-salt structure were obtained through thermal decomposition of Cd1 − xZnxO2 (x = 0, 0.37, 0.57, 1) thin films which were electrodeposited from aqueous solution at room temperature. X-ray diffraction results showed that the Zn ions were incorporated into rock salt-structure of CdO and the crystal lattice parameters decreased with the increase of Zn contents. The bandgaps of the Cd1 − xZnxO thin films were obtained from optical transmission and were 2.40, 2.51, 2.63 and 3.25 eV, respectively.  相似文献   

10.
S. Han  D.Z. Shen  Y.M. Zhao  Z.G. Ju  B. Yao 《Vacuum》2010,84(9):1149-21761
Cubic MgxZn1xO thin films with Mg composition around 70% were deposited on A-plane and M-plane sapphire substrates by rf-reactive magnetron sputtering. Measured structural and optical properties of these thin films indicated an optimal annealing temperature of 700 °C which produced high quality cubic MgZnO thin films on both substrates. Moreover, when the annealing temperature exceeded 750 °C, a much rougher surface resulted, and several large mosaic particles on the surface of the annealed films appeared. From EDX results, the Mg composition was lower than that found in other sections of the annealed films. We attributed this to thermally induced reconstruction of the crystallites. This phenomenon was more obvious for annealed MgZnO films on A-plane sapphire than that on M-plane sapphire. Thermal expansion mismatch with the substrate is the principal reason.  相似文献   

11.
Thin films of Cd0.8Zn0.2Te/Si structures were prepared by vacuum evaporation technique. The electrical properties such as activation energy, barrier height, and transport mechanism along with the capacitance-voltage characteristics are analyzed. The zero field activation energy calculated from the saturation current density with the inverse absolute temperature is found to be 0.37 eV and the barrier height is 0.54 eV. As the applied bias voltage increases the activation energy decreases from 0.3 to 0.22 eV for the bias range of 0-2 V. From the observed current voltage characteristics it is found that the surface state density is high for the films deposited at room temperature. From the high-frequency (1 MHz) C-V measurement the built in voltage is found to be 0.15 V. The plot of 1/C2 vs the applied bias voltage behaviour is linear, indicating the presence of abrupt junction. The acceptor concentration as obtained from the 1/C2 vs bias voltage is 1.4×1016 cm−3.  相似文献   

12.
MgxZn1−xO thin films were grown on c-sapphire substrates by metal-organic chemical vapor deposition (MOCVD), followed by annealing in vacuum at different temperatures for 1 h. The UV emission peak was blue shifted in the photoluminescence (PL) spectra and a dramatic shift of (0 0 2) diffraction peak to higher angle was observed in X-ray diffraction (XRD) pattern with increasing anneal temperature. This suggested the band gap and the lattice parameter of MgxZn1−xO had been affected by annealing in vacuum. Furthermore, the structure of the film became sparser due to annealing in vacuum. From the X-ray photoelectron spectroscopy (XPS) and ICP of the MgxZn1−xO film, we can find that the anneal temperature have an effect on the content of each element in MgxZn1−xO quantitatively. In addition, the value of x in MgxZn1−xO varied slightly as the annealing temperature increased. The above phenomena indicated that annealing in vacuum could slightly adjust the percentage of Mg indirectly in MgxZn1−xO film and offer a good idea in MgxZn1−xO devices facture.  相似文献   

13.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

14.
L. Zhuang  K.H. Wong 《Thin solid films》2008,516(16):5607-5611
The single-phase epitaxial MgxZn1−xO (0.4 < x < 0.9) alloy films with wide band gap have been deposited on cubic LaAlO3 (LAO) (100) substrates by pulsed laser deposition (PLD). X-ray diffraction measurement and TEM photograph indicate that the cubic phase could be stabilized up to Zn content about 0.6 without any phase separation. Films and substrates have a good heteroepitaxial relationship of (100) MgxZn1−xO||(100)LAO (out-of-plane) and (011)MgxZn1−xO||(010)LAO (in-plane). The lattice parameters a of MgxZn1−xO films increase almost linearly with increasing ZnO composition, while the band gap energy of the materials increases from 5.17 to 5.27 eV by alloying with more MgO. The cross-section morphology reveals layer thickness of about 250-300 nm and AFM scan over a 30 μm × 30 μm area reveals a surface roughness Ra of about 100 nm.  相似文献   

15.
The photovoltaic Cd1−xZnxS thin films, fabricated by chemical bath deposition, were successfully used as n-type buffer layer in CuInGaSe2 (CIGS) solar cells. Comprehensive optical properties of the Cd1−xZnxS thin films were measured and modeled by spectroscopic ellipsometry (SE), which is proven to be an excellent and non-destructive technique to determine optical properties of thin films. The optical band gap of Cd1−xZnxS thin films can be tuned from 2.43 eV to 3.25 eV by controlling the Zn content (x) and deposition conditions. The wider-band-gap Cd1−xZnxS film was found to be favorable to improve the quantum efficiency in the wavelength range of 450-550 nm, resulting in an increase of short-circuits current for solar cells. From the characterization of quantum efficiency (QE) and current-voltage curve (J-V) of CIGS cells, the Cd1−xZnxS films (x = 0.32, 0.45) were demonstrated to significantly enhance the photovoltaic performance of CIGS solar cell. The highest efficiency (10.5%) of CIGS solar cell was obtained using a dense and homogenous Cd0.68Zn0.32S thin film as the buffer layer.  相似文献   

16.
A.H. Eid  A.M. Salem  T.M. Dahy 《Vacuum》2008,83(2):401-407
Stoichiometric bulk ingot materials of the ternary mixture Cd(1−x)MnxSe (0.05 ≤ x ≤ 0.9) were prepared by direct fusion of the constituent elements in vacuum sealed silica tubes. X-ray diffraction studies indicate that the investigated samples exhibited a hexagonal structure. The lattice parameters varied linearly with Mn content, following Vegard's law. Thin films were deposited by thermal evaporation from the pre-synthesized ingot material, onto glass substrates. X-ray and electron diffraction studies on the as-deposited and annealed films revealed an amorphous-to-crystalline phase transition at Ta ≈ 423 K. EDAX studies on the prepared films show that the as-deposited films are nearly stoichiometric. The transmittance and reflectance of the deposited Cd(1−x)MnxSe films were measured at normal light incident in the wavelength spectral range 500-2500 nm. Analysis of the transmittance spectra in the entire wavelength range allowed the determination of the refractive index. The dispersion parameters have been calculated, from which the static refractive index as well as static dielecric constant were calculated. Analysis of the absorption coefficient of the investigated films revealed the existence of both the allowed direct and forbidden direct optical transition mechanisms. The corresponding energies were estimated.  相似文献   

17.
Hui Li 《Vacuum》2008,82(5):459-462
The MgxZn1−xO films were prepared in different Ar-O2 mixture ambience by magnetron sputtering. According to the X-ray diffraction (XRD) patterns and the energy dispersive X-ray spectroscopy (EDS) results, it was found that the Mg contents in the films varied with the different ratios of O2/O2+Ar, and the crystal quality of the films improved with the increasing of Mg contents. Meanwhile, the ultraviolet and visible (UV-vis) absorption spectroscopy indicated that the band gap of the films also increased. Moreover, it could be seen that the photoluminescence (PL) spectrum was different from that of undoped Zinc oxide (ZnO) films or the results in other reports on the MgxZn1−xO films: there was no blueshift effect happening for the near-band-edge (NBE) emission in MgxZn1−xO films with different Mg contents.  相似文献   

18.
The effects of deposition parameters on the deposition rate, microstructure, and composition of Ge1−xCx thin films prepared by plasma enhanced chemical vapor deposition were studied and the films' infrared optical properties were investigated. The results show that the carbon content of these films increases as the precursor gas flow ratio of CH4:GeH4 increases, while the infrared refractive index of these films decreases from 4 to 2. The deposition rate increases with the radio-frequency power and reaches a constant value when the power goes above 60 W. Ge1−xCx/diamond-like carbon infrared antireflection coatings were prepared, and the transmittance of the coatings in the band of 8 to 14 μm was 88%, which is superior to that of Zinc Sulfide substrate by 14%.  相似文献   

19.
Thermoelectric solid solutions of Bi2 (Te1−xSex)3 with x = 0, 0.2, 0.4, 0.6, 0.8 and 1 were grown using the Bridgman technique. Thin films of these materials of different compositions were prepared by conventional thermal evaporation of the prepared bulk materials. The temperature dependence of the electrical conductivity σ, free carriers concentration n, mobility μH, and seebeck coefficient S, of the as-deposited and films annealed at different temperatures, have been studied at temperature ranging from 300 to 500 K. The temperature dependence of σ revealed an intrinsic conduction mechanism above 400 K, while for temperatures less than 400 K an extrinsic conduction is dominant.The activation energy, ΔE, and the energy gap, Eg, were found to increase with increasing Se content. The variation of S with temperature revealed that the samples with different compositions x are degenerate semiconductors with n-type conduction. Both, the annealing and composition effects on Hall constant, RH, density of electron carriers, n, Hall mobility, μH, and the effective mass, m/m0 are studied in the above temperature range.  相似文献   

20.
The optical constants of the Ge25Sb15−xBixS60 (0?x?15) chalcogenide films, either as-deposited or after being annealed at various temperatures have been computed in the spectral wavelength range 400-2400 nm from the transmittance and reflectance measurements of normally-incident light. With the increase in bismuth content, the optical energy gap (which is indirect) decreases, while the refractive index increases. The effects of film thickness, substrate type, deposition rate and γ-radiation on optical properties have been studied. The effect of thermal annealing on the growth characteristics and stability of the films has been studied using X-ray diffraction and scanning electron microscopy. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号