首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Nanostructured tin oxide films were prepared by depositing different sols using the so-called spray-gel pyrolysis process. SnO2 suspensions (sols) were obtained from tin (IV) tert-amyloxide (Sn(t-OAm)4) or tin (IV) chloride pentahydrate (SnCl4·5H2O) precursors, and stabilized with ammonia or tetraethylammonium hydroxide (TEA-OH). Xerogels from the different sols were obtained by solvent evaporation under controlled humidity.The Relative Gelling Volumes (RGV) of these sols strongly depended on the type of precursor. Xerogels obtained from inorganic salts gelled faster, while, as determined by thermal gravimetric analysis, occluding a significant amount of volatile compounds. Infrared spectroscopic analysis was performed on raw and annealed xerogels (300, 500 °C, 1 h). Annealing removed water and ammonium or alkyl ammonium chloride, increasing the number of Sn-O-Sn bonds.SnO2 films were prepared by spraying the sols for 60 min onto glass and alumina substrates at 130 °C. The films obtained from all the sols were amorphous or displayed a very small grain size, and crystallized after annealing at 400 °C or 500 °C in air for 2 h. X-ray diffraction analysis showed the presence of the cassiterite structure and line broadening indicated a polycrystalline material with a grain size in the nanometer range. Results obtained from Scanning Electron Microscopy analysis demonstrated a strong dependence of the film morphology on the RGV of the sols. Films obtained from Sn(t-OAm)4 showed a highly textured morphology based on fiber-shape bridges, whereas the films obtained from SnCl4·5H2O had a smoother surface formed by “O-ring” shaped domains.Lastly, the performance of these films as gas sensor devices was tested. The conductance (sensor) response for ethanol as a target analyte was of the same order of magnitude for the three kinds of films. However, the response of the highly textured films was more stable with shorter response times.  相似文献   

2.
We investigated dye-sensitized solar cell (DSSC) performances with regard to transparent conducting oxide substrates: indium-doped tin oxide (ITO) and fluorine-doped tin oxide (FTO). The DSSCs were in a standard configuration: a photoelectrode of TiO2 nanoparticles (9 nm size, anatase phase) deposited on transparent and electrically conductive substrates, counter electrodes of Pt-coated glass, ruthenium 535 dye, and AN50 iodolyte electrolyte (Solaronix). The cells manufactured from ITO (FTO) had an open circuit voltage of 705 (763) mV and short-circuit current of 7.87 (34.3) mA/cm2. A direct correlation was found between transparent conductive film resistivity and cell efficiency. Resistivities of 52 Ω/sq for ITO substrates and 8.5 Ω/sq for FTO led to major differences in internal global efficiency: from 2.24% for ITO to 9.6% for FTO.  相似文献   

3.
Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl3, SnCl4 and NH3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ~ 40-1160 nm. After calcination at 550 °C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.  相似文献   

4.
We report on transparent conductive indium tin oxide (In2O3:Sn; ITO) nanoparticle films processed at a low temperature of 130 °C for the application in lighting devices using spin coating and doctor blading techniques. Major emphasis is put on the beneficial application of the particular transparent electrode material for the fabrication of patterned large area electroluminescence lamps. In order to improve film properties like adhesion and conductivity, hybrid nanoparticle-polymer blends out of ITO particles and organic film-forming agent polyvinylpyrrolidone (PVP) and the organofunctional coupling agent 3-methacryloxypropyltrimethoxysilane (MPTS) have been developed. The layers were cured by UV-irradiation, which was also used for lateral structuring of the transparent, conductive electrode. Additional low-temperature heat treatment (T = 130 °C) in air and forming gas improved the electronic properties. While pure ITO nanoparticulate layers processed at 130 °C exhibited conductance of up to 3.1 Ω− 1 cm− 1, the nanocomposite coatings showed a conductance of up to 9.8 Ω− 1 cm− 1. Corresponding layers with a sheet resistance of 750 Ω/□ were applied in electroluminescent lamps.  相似文献   

5.
Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 °C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively.The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 × 10−4 and 6 × 10−4 Ω cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 × 10−3 Ω−1 for ITO higher than 0.55 × 10−3 Ω−1 for FTO.  相似文献   

6.
Fluorine-doped tin oxide (SnO2:F, FTO) thin films were prepared by the nebulized spray pyrolysis technique on glass substrates using tin(IV) chloride pentahydrate (SnCl2·5H2O) and ammonium fluoride (NH4F) as source materials. Different volumes of solvent were used to prepare the spray solution, and their effects on structural, optical, morphological, and electrical properties were investigated. X-ray diffraction patterns revealed the polycrystalline tetragonal structure of FTO films. FESEM images demonstrated well-aligned trigonal-shaped nano-grains. Optical band gap values were estimated to be in the range of 3.71–3.66 eV by Tauc’s plot. The effects of solvent volume on the resistivity, conductivity, carrier concentration, mobility, and figure of merit of FTO films were examined. The lowest electrical resistivity and sheet resistance values were 1.90?×?10?4 Ω cm and 4.96 Ω/cm, respectively.  相似文献   

7.
Layered nanocrystallines SnS and β-SnS2 were fabricated through a mild solvothermal route in the temperature range of 180-190°C. Reaction of thiourea with different tin sources (SnCl2·2H2O, SnCl4·5H2O or SnCl4) in organic solvents (benzene or ethanol) has been systematically investigated. By merely adjusting the proportion of the reactants, phase-pure SnS and β-SnS2 could be obtained, respectively. The resulting compounds were examined by XRD and TEM techniques.  相似文献   

8.
We report on the influence of additives on the electrical, optical, morphological and mechanical properties of transparent conductive indium tin oxide (In2O3:Sn; ITO) nanoparticle films by the use of polymers as matrix material. Key issues to fabricate layers suitable for use in electronic device applications are presented. Polyvinyl derivatives polyvinyl acetate, polyvinyl alcohol (PVA) and polyvinyl butyral were applied and their suitability to form transparent conductive ITO nanocomposite coatings at a maximum process temperature of 130 °C was investigated. A low-temperature treatment with UV-light has been developed to provide the possibility of curing ITO thin films deposited on substrates which do not withstand high process temperatures. Compared to best pure ITO layers (0.2 Ω− 1 cm− 1), the ITO-PVA nanocomposite coatings show a conductance value of 4.1 Ω− 1 cm− 1 and 5.9 Ω− 1 cm− 1 after reducing in forming gas. Sheet resistance of ca. 1200 Ω/□ with coexistent transmittance of 85% at 550 nm for a layer thickness of about 1.45 μm was achieved. The conductance enhancement is a consequence of nanoparticulate ITO network densification due to the acting shrinkage forces caused by the polymer matrix during film drying and additionally UV-induced crosslinking of PVA.  相似文献   

9.
Indium tin oxide (ITO) films were deposited on glass substrates by dip-coating and thermal pyrolysis methods. Sn (IV) is often used in the spray method as a precursor salt, but in this research we have employed a new procedure that uses Sn (II) and In(NO3)3 for preparation of transparent conductive thin films. Then, colloidal Ag was deposited on the ITO layers in order to compare the two synthesis methods, and the structural and electrical properties of the resultant films were investigated by FESEM, XRD, and four-terminal resistometry. The obtained films are polycrystalline with a preferred orientation of (200). The XRD patterns of the films indicate that in both films, the Sn phase is crystallized separately from In2O3. The presence of a Sn peak and the overall low intensity of XRD peaks suggest relative crystallization of ITO structure. For this reason, Ag films were deposited by dip coating method using a colloidal sol. By analyzing the XRD patterns of Ag-ITO films after eliminating the Sn peak, the increased intensity of the peaks confirmed the relatively good crystallization of the ITO films. The results show that the films with a sheet resistance as low as 2 × 10?2 Ω·cm, which is beneficial for solar cells, were achieved.  相似文献   

10.
Indium tin oxide (ITO) films were deposited on soda-lime glass substrates by the spray pyrolysis method using a spray solution of InCl3·3H2O as a precursor, SnCl4·5H2O as a dopant and acetylacetone (AcAcH) as a chelating agent. The effect of the addition of AcAcH to the spray solution on the surface morphology of the ITO film was investigated. The surface quality of the film prepared from the spray solution with AcAcH was better than that without AcAcH. The ITO film with the thickness of 230 nm, using the spray solution with AcAcH, exhibited the lowest resistivity of 4.75 × 10?4 Ω·cm and higher optical transmittance of 85 %, respectively.  相似文献   

11.
Fluorine-doped tin oxide (FTO), one of the most popular transparent conductive oxide (TCO) materials, coated on glass has been used in various applications including many new-generation solar cells. However, there is a lack of reporting when it comes to FTO coated on flexible transparent substrate. For this paper, spray pyrolysis technique was used to have FTO firstly coated on to a brass substrate, which was then dissolved away after cementing an upper flexible transparent polyethylene terephthalate (PET) substrate, finally leaving high quality FTO film on PET substrate. Their structural, electrical, optical and flexible properties were investigated. The lowest resistivity was 7.6 × 10− 4 Ω cm, which is as good as conventional FTO deposited on glass. Their fold ability could be significantly improved to transcend commercial ITO/PET only by increasing the pretreating time of the brass substrate.  相似文献   

12.
The structural, electrical, and optical properties of zinc-tin-oxide (ZTO) films with different compositions prepared by thermal co-evaporation using ZnO and SnO2 sources were investigated. The as-deposited films were amorphous but opaque. The lowest resistivity, ~ 8 × 10− 5 Ω cm, was obtained for ZTO with 33 at.% Sn. Upon post-annealing in air, a sharp increase in transparency was observed between 350 and 550 °C, accompanying with a marked decrease in conductivity. This was attributed to re-oxidation of partially reduced oxides, leading to a lower density of oxygen vacancies. Our study showed that conductive and transparent ZTO films with low Sn content may be prepared by co-evaporation deposition, and suitable for use in devices as transparent electrodes.  相似文献   

13.
The influence of deposition power, thickness and oxygen gas flow rate on electrical and optical properties of indium tin oxide (ITO) films deposited on flexible, transparent substrates, such as polycarbonate (PC) and metallocene cyclo-olefin copolymers (mCOC), at room temperature was studied. The ITO films were prepared by radio frequency magnetron sputtering with the target made by sintering a mixture of 90 wt.% of indium oxide (In2O3) and 10 wt.% of tin oxide (SnO2). The results show that (1) average transmission in the visible range (400-700 nm) was about 85%-90%, and (2) ITO films deposited on glass, PC and mCOC at 100 W without supplying additional oxygen gas had optimum resistivity of 6.35 × 10−4 Ω-cm, 5.86 × 10−4 Ω-cm and 6.72 × 10−4 Ω-cm, respectively. In terms of both electrical and optical properties of indium tin oxide films, the optimum thickness was observed to be 150-300 nm.  相似文献   

14.
Indium tin oxide (ITO) thin films were prepared on quartz glass substrates by a dip-coating process. The starting solution was prepared by mixing indium chloride dissolved in acetylacetone and tin chloride dissolved in ethanol. The ITO thin films containing 0 20 mol% SnO2 were successfully prepared by heat-treatment at above 400 °C. Chemical stability of sol were investigated by using a FTIR spectrometer. The electrical resistivity of the thin films decreased with increasing heat-treatment temperature, that is carrier concentration increased, and mobility decreased with increasing SnO2 content. The ITO thin films containing 12 mol% SnO2 showed the minimum resistivity of =1.2 × 10–3 ( cm). It also showed high carrier concentration of N=1.2 × 1020(cm–3) and mobility H=7.0(cm2 V–1 s–1).  相似文献   

15.
Thin film fabrication of crystalline 12CaO·7Al2O3 (C12A7) with zeolitic structure was examined, and their electrical and optical properties were measured. Polycrystalline thin films were prepared by post-annealing of amorphous films in oxygen atmosphere at temperatures above 800 °C. Choice of substrates was crucial for obtaining single-phase thin films. Although various oxide substrates (single crystals of Al2O3, Y-stabilized ZrO2, MgO and silica glass) were examined, single-phase films were obtained only for MgO substrates and the other substrates reacted with the CaO component in the films during post-annealing. The optical band gap of C12A7 was evaluated to be 5.9 eV. Hydride ions were incorporated into the film by a thermal treatment in a hydrogen atmosphere at 1200 °C. The resulting transparent thin films were converted into transparent persistent electronic conductors exhibiting an electrical conductivity 6.2×10−1 S cm−1 at 300 K by ultraviolet light illumination. This is the first example of transparent conductive thin film in which conductive areas can be patterned directly by light.  相似文献   

16.
Porous thin films comprising nanoparticles of In2O3:Sn (known as indium tin oxide, ITO) were made by spin coating followed by annealing. The nanoparticles were prepared by a wet chemical technique. The films had a luminous transmittance of ∼90% and an electrical resistivity of ∼10−2 Ω cm. Spectral transmittance and reflectance were analyzed by first representing the ITO nanoparticles within the Drude theory, with a frequency-dependent scattering time characteristic for ionized impurity scattering, and then applying effective medium theory to account for the porosity. It was found that the individual nanoparticles had a resistivity of ∼2×10−4 Ω cm, i.e. their electrical properties were comparable to those in the best films made by physical or chemical vapour deposition. Temperature-dependent electrical resistivity data for the films could be reconciled with a model for fluctuation induced tunneling between micrometer-size clusters of internally connected ITO nanoparticles.  相似文献   

17.
Orthorhombic stannous sulfide (SnS) films were prepared by chemical bath deposition in which stannous dichloride (SnCl2), ammonium citrate (C6H5O7(NH4)3) and sodium thiosulfate (Na2S2O3) were used as tin source, chelating reagent and sulfur source, respectively. The influence of the deposition temperatures and the concentration ratios of Na2S2O3/SnCl2 on the morphologies, compositions and electrical and optical properties of the SnS films were investigated. The results show that the compactness of the SnS films gets worse when the deposition temperature increases, while the compactness of the films gets better when the concentration ratio of Na2S2O3/SnCl2 increases. The compositions of the films (the molar ratio of S/Sn ranges from 46.7:53.3 to 48.9:51.1) are all close to the stoichiometric ratio of SnS, and the molar ratio of S/Sn in the films increases as the deposition temperature and the concentration ratio of Na2S2O3/SnCl2 increase. The optical bandgaps of the SnS films are in the range of 1.01 eV-1.26 eV. The dark conductivities and photo conductivities of the SnS films all increase as the deposition temperature and the concentration ratio of Na2S2O3/SnCl2 increase.  相似文献   

18.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

19.
ITO thin films deposited by advanced pulsed laser deposition   总被引:1,自引:0,他引:1  
Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 °C), pressure (1-6 × 10− 2 Torr), laser fluence (1-4 J/cm2) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 °C on a large area (5 × 5 cm2). The films have electrical resistivity of 8 × 10− 4 Ω cm at RT, 5 × 10− 4 Ω cm at 180 °C and an optical transmission in the visible range, around 89%.  相似文献   

20.
ITO thin films were prepared by irradiating 2.45 GHz of microwave with an output power of 700 W using a commercial kitchen microwave oven. A substrate temperature went up and down rapidly between 100 and 650 °C in a minute by a dielectric loss of SnO2 layer pre-deposited on a glass substrate. We found that the electrical and optical properties of films were affected by the atmosphere in a microwave irradiation, while the sintering was completed within a few minutes. Although the electrical resistivity was not reduced below 5.0 × 10− 4 Ω·cm in this study, the results lead to the possibility of a practical rapid synthesis of ITO transparent conducting oxide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号