首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical response of vacuum-evaporated Cd1−xZnxTe thin films in the 1.5-5.6 eV photon energy range at room temperature has been studied by spectroscopic ellipsometry. The films of Cd1−xZnxTe (x=0.04) were deposited at room temperature onto well-cleaned glass substrates of film thickness 450 nm. The measured dielectric-function spectra reveal distinct structures at energies of the E1, E11 and E2 critical points corresponding to the interband transitions. Dielectric related optical constants such as complex refractive index, the absorption coefficients and the normal incidence reflectivity, are presented. Results are in satisfactory agreement with the calculations over the entire range of the photon energies.  相似文献   

2.
The effects of deposition parameters on the deposition rate, microstructure, and composition of Ge1−xCx thin films prepared by plasma enhanced chemical vapor deposition were studied and the films' infrared optical properties were investigated. The results show that the carbon content of these films increases as the precursor gas flow ratio of CH4:GeH4 increases, while the infrared refractive index of these films decreases from 4 to 2. The deposition rate increases with the radio-frequency power and reaches a constant value when the power goes above 60 W. Ge1−xCx/diamond-like carbon infrared antireflection coatings were prepared, and the transmittance of the coatings in the band of 8 to 14 μm was 88%, which is superior to that of Zinc Sulfide substrate by 14%.  相似文献   

3.
Ba(Ti1  x,Nix)O3 ferroelectric thin films with perovskite structure are prepared on fused quartz substrates by a sol-gel process. Optical transmittance measurements indicate that Ni-doping has an obvious effect on the energy band structure of BaTiO3. It has been found that the refractive index n, extinction coefficient k, and band gap energy Eg of the films are functions of the film composition. The Eg of Ba(Ti1  x,Nix)O3 decreases approximately linearly as the Ni content increases, which is attributed to the decline of conduction band energy level with increasing the Ni content. On the other hand, n and k both increase linearly with increasing the Ni content because of the increase of packing density. These results indicate that thin films might have potential applications in BaTiO3-based thin-film optical devices.  相似文献   

4.
Transparent semiconductor thin films of Zn1 − xTixO (0 ≦ x ≦ 0.12) were deposited on alkali-free glass substrates by the sol-gel method. The effects of Ti addition on the crystallization, microstructure, optical properties and resistivity of ZnO thin films were investigated. The as-coated films were preheated at 300 °C, and then annealed at 500 °C in air ambiance. X-ray diffraction results showed all polycrystalline Zn1  xTixO thin films with preferred orientation along the (002) plane. Ti incorporated within the ZnO thin films not only decreased surface roughness but also increased optical transmittance and electrical resistivity. In the present study, the Zn0.88Ti0.12O film exhibited the best properties, namely an average transmittance of 91.0% (an increase of ~ 12% over the pure ZnO film) and an RMS roughness value of 1.04 nm.  相似文献   

5.
High-quality Cd1−xMnxTe polycrystalline films with (1 1 1) preferred orientation were deposited by close-spaced sublimation (CSS) method. The XRD and optical absorption analysis indicated that the band gap of the film was about 1.6 eV. The as-grown Cd1−xMnxTe films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. The effect of various post-deposition treatments with vapors of chlorine-containing materials (CdCl2 and/or MnCl2), in Ar or H2/Ar ambient, on the properties of Cd1−xMnxTe cells was studied.  相似文献   

6.
A.H. Eid  A.M. Salem  T.M. Dahy 《Vacuum》2008,83(2):401-407
Stoichiometric bulk ingot materials of the ternary mixture Cd(1−x)MnxSe (0.05 ≤ x ≤ 0.9) were prepared by direct fusion of the constituent elements in vacuum sealed silica tubes. X-ray diffraction studies indicate that the investigated samples exhibited a hexagonal structure. The lattice parameters varied linearly with Mn content, following Vegard's law. Thin films were deposited by thermal evaporation from the pre-synthesized ingot material, onto glass substrates. X-ray and electron diffraction studies on the as-deposited and annealed films revealed an amorphous-to-crystalline phase transition at Ta ≈ 423 K. EDAX studies on the prepared films show that the as-deposited films are nearly stoichiometric. The transmittance and reflectance of the deposited Cd(1−x)MnxSe films were measured at normal light incident in the wavelength spectral range 500-2500 nm. Analysis of the transmittance spectra in the entire wavelength range allowed the determination of the refractive index. The dispersion parameters have been calculated, from which the static refractive index as well as static dielecric constant were calculated. Analysis of the absorption coefficient of the investigated films revealed the existence of both the allowed direct and forbidden direct optical transition mechanisms. The corresponding energies were estimated.  相似文献   

7.
By using a sputter-assisted chemical vapor deposition (CVD) of supermagnetron plasma, amorphous CNx:H films were deposited on the lower part of two parallel electrodes. By applying rf power to the upper electrode (UPRF) at 5 W to 800 W, polymer-like a-CNx:H films were deposited on substrates placed on the lower electrode with an rf power (LORF) of 10 W. The deposition rate increased as UPRF increased. The hardness was as low as about 6.5 GPa, which is less than that of glass (13.1 GPa). The refractive index changed only slightly as UPRF changed from 1.6 to 1.75. The FT-IR spectrum showed strong absorption bands of NH and CH bonds at high and low UPRFs, respectively. The optical band gap was as large as 2.1 to 2.5, and it decreased as UPRF increased. These a-CNx:H films showed white photoluminescence (PL) with broadband. With the increase of UPRF from 5 W to 800 W, the PL peak energy shifted down from 2.3 eV to 1.9 eV.  相似文献   

8.
MgxZn1−xO films were deposited onto the glass substrate by a sol-gel spin coating method. The drying and annealing temperatures were 300 and 500 °C in air. As x varies from 0 to 1, it was observed that the crystal structure is changed from wurtzite ZnO to cubic MgO. The morphology characterizations of these films were observed by scanning electron microscope. The randomly oriented hexagonal nanorods were gown on the glass surface when x = 0 and 0.25, which became disappeared with increasing Mg contents. The optical properties of these films were investigated by room-temperature photoluminescence (PL) and UV-vis absorption spectra, which show that the optical band gap and photoluminescence in the visible and UV regions can be ideally tuned by varying the Mg contents in the MgxZn1−xO alloy films.  相似文献   

9.
Titanium Interlayer Mediated Epitaxy (TIME) has been shown to promote the formation of epitaxial CoSi2 on Si (100). Similarities between Si and Si1−xGex alloys have motivated a study of whether the TIME process could be successful in forming epitaxial CoSi2 on Si1−xGex. Titanium layers of varying thickness were deposited as interlayers between a Co layer and c-Si/Si0.8Ge0.2 grown epitaxially onto Si (100) to investigate their role in the formation of epitaxial CoSi2 on Si1−xGex alloys. The effect of Ti interlayer thickness on the orientation of CoSi2 to the Si1−xGex substrate, and the conditions under which a polycrystalline CoSi2 film has been formed have been studied. It was found that Ti was beneficial in promoting epitaxy to the substrate in all cases. The experimental results indicate that with a Ti interlayer thickness of ∼ 50 Å, the formation of epitaxial CoSi2 adjacent to the substrate was achieved, and pinhole formation was minimized. It was also observed that for increased interlayer thickness, Ti reacted with Si to form a titanium silicide.  相似文献   

10.
S. Han  D.Z. Shen  Y.M. Zhao  Z.G. Ju  B. Yao 《Vacuum》2010,84(9):1149-21761
Cubic MgxZn1xO thin films with Mg composition around 70% were deposited on A-plane and M-plane sapphire substrates by rf-reactive magnetron sputtering. Measured structural and optical properties of these thin films indicated an optimal annealing temperature of 700 °C which produced high quality cubic MgZnO thin films on both substrates. Moreover, when the annealing temperature exceeded 750 °C, a much rougher surface resulted, and several large mosaic particles on the surface of the annealed films appeared. From EDX results, the Mg composition was lower than that found in other sections of the annealed films. We attributed this to thermally induced reconstruction of the crystallites. This phenomenon was more obvious for annealed MgZnO films on A-plane sapphire than that on M-plane sapphire. Thermal expansion mismatch with the substrate is the principal reason.  相似文献   

11.
T. Dedova  J. Wienke  M. Krunks 《Thin solid films》2007,515(15):6064-6067
The In(OH)xSy thin films were deposited by chemical bath deposition (CBD) using three different deposition procedures: ‘hot’: starting the deposition at 70 °C, ‘cold’: starting the deposition at room temperature and pre-treatment with In3+ ions prior the ‘hot’ deposition. The analysis of the deposited In(OH)xSy layers on glass revealed that modifications in the chemical bath deposition procedure provoked significant changes in the nucleation process, the growth rate, the layer elemental composition and the layer morphology. With an additional In3+ pre-treatment or starting from a cold solution, the formation of a dense bottom layer has been observed, resulting in In(OH)xSy films with more compact structure with refractive index values of 2.6. The comparison of the measured In/S ratio with a thicker layer suggests, that the In(OH)xSy deposition starts with an OH-rich layer. Assuming the indirect allowed band gap transition type, an Eg of 2.2 eV was found independent of the procedure type or deposition time.  相似文献   

12.
P.C. Wang  M.C. Lin  M.J. Chen 《Thin solid films》2010,518(24):7501-7504
LiAlxOy films with thicknesses of 65-200 nm were deposited by the atomic layer deposition (ALD) technique on the LZ101 Mg-Li alloy. The ALD-deposited LiAlxOy films exhibit an amorphous structure and have an atomic ratios of Li:Al:O = 1:1:2. The potentio-dynamic polarization tests show that the corrosion resistance of Mg-Li alloys can be significantly improved due to the dense and pinhole-free structure as well as the excellent coverage and conformity of the ALD-deposited LiAlxOy films.  相似文献   

13.
L. Zhuang  K.H. Wong 《Thin solid films》2008,516(16):5607-5611
The single-phase epitaxial MgxZn1−xO (0.4 < x < 0.9) alloy films with wide band gap have been deposited on cubic LaAlO3 (LAO) (100) substrates by pulsed laser deposition (PLD). X-ray diffraction measurement and TEM photograph indicate that the cubic phase could be stabilized up to Zn content about 0.6 without any phase separation. Films and substrates have a good heteroepitaxial relationship of (100) MgxZn1−xO||(100)LAO (out-of-plane) and (011)MgxZn1−xO||(010)LAO (in-plane). The lattice parameters a of MgxZn1−xO films increase almost linearly with increasing ZnO composition, while the band gap energy of the materials increases from 5.17 to 5.27 eV by alloying with more MgO. The cross-section morphology reveals layer thickness of about 250-300 nm and AFM scan over a 30 μm × 30 μm area reveals a surface roughness Ra of about 100 nm.  相似文献   

14.
Thermoelectric solid solutions of Bi2 (Te1−xSex)3 with x = 0, 0.2, 0.4, 0.6, 0.8 and 1 were grown using the Bridgman technique. Thin films of these materials of different compositions were prepared by conventional thermal evaporation of the prepared bulk materials. The temperature dependence of the electrical conductivity σ, free carriers concentration n, mobility μH, and seebeck coefficient S, of the as-deposited and films annealed at different temperatures, have been studied at temperature ranging from 300 to 500 K. The temperature dependence of σ revealed an intrinsic conduction mechanism above 400 K, while for temperatures less than 400 K an extrinsic conduction is dominant.The activation energy, ΔE, and the energy gap, Eg, were found to increase with increasing Se content. The variation of S with temperature revealed that the samples with different compositions x are degenerate semiconductors with n-type conduction. Both, the annealing and composition effects on Hall constant, RH, density of electron carriers, n, Hall mobility, μH, and the effective mass, m/m0 are studied in the above temperature range.  相似文献   

15.
Xiaowen Wu  Lanqin Yan 《Vacuum》2008,82(5):448-454
Ge1−xCx thin film was prepared by plasma-enhanced chemical vapor deposition (PECVD) using GeH4 and CH4 as precursors and its mechanical and environmental properties were investigated. The samples were measured by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectrum, FT-IR spectrometer, WS-92 testing apparatus of adhesion and FY-03E testing apparatus of salt and fog. The results show that the infrared refractive index of Ge1−xCx thin film varies from 2 to 4 with different x values. The adhesion increases with increasing gas flow ratio of GeH4/CH4 and decreases with increasing film thickness. The nanoindentation hardness number decreases with increasing germanium content. Three series films exhibit the best anti-corrosion property when the RF power is about 80 W, or substrate temperature is about 150 °C, or DC bias is about −100 V. Furthermore, increasing the gas flow ratio of GeH4/CH4 improves the anti-corrosion property of these films.  相似文献   

16.
Zn1 − xMgxO thin films of various Mg compositions were deposited on quartz substrates using inexpensive ultrasonic spray pyrolysis technique. The influence of varying Mg composition and substrate temperature on structural, electrical and optical properties of Zn1 − xMgxO films were systematically investigated. The structural transition from hexagonal to cubic phase has been observed for Mg content greater than 70 mol%. AFM images of the Zn1 − xMgxO films (x = 0.3) deposited at optimized substrate temperature clearly reveals the formation of nanorods of hexagonal Zn1 − xMgxO. The variation of the cation-anion bond length to Mg content shows that the lattice constant of the hexagonal Zn1 − xMgxO decreases with corresponding increase in Mg content, which result in structure gradually deviating from wurtzite structure. The tuning of the band gap was obtained from 3.58 to 6.16 eV with corresponding increase in Mg content. The photoluminescence results also revealed the shift in ultraviolet peak position towards the higher energy side.  相似文献   

17.
Itzik Shturman 《Thin solid films》2009,517(8):2767-2774
The effects of LaNiO3 (LNO) and Pt electrodes on the properties of Pb(Zrx,Ti1 − x)O3 (PZT) films were compared. Both LNO and PZT were prepared by chemical solution deposition (CSD) methods. Specifically, the microstructure of LNO and its influence on the PZT properties were studied as a function of PbO excess. Conditions to minimize the Pyrochlore phase and porosity were found. Remnant polarization, coercive field and fatigue limit were improved in the PZT/LNO films relative to the PZT/Pt films. Additionally, the PZT crystallization temperature over LNO was 500 °C, about ~ 50 °C lower than over Pt. The crystallization temperature reported here is amongst the lowest values for CSD-based PZT films.  相似文献   

18.
The BiCoxFe1 − xO3 samples have been successfully synthesized by hydrothermal process. The resulting products were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDS), differential thermal analysis (DTA), and physical property measurement system (PPMS).It was found that the magnetization of the obtained products was greatly enhanced by Co substituting for Fe ions. Furthermore, the value of magnetism of BiCoxFe1 − xO3 samples can be adjusted by Fe doping concentration. DTA curve indicates the ferroelectric properties of the obtained BCFO samples are not affected by Co substitution. Therefore, it would be interesting to realize thin films with similar compositions and study their properties in the interest of device applications.  相似文献   

19.
Lead-free thick film negative temperature coefficient (NTC) thermistors based on perovskite-type BaCoIIxCoIII2xBi1 − 3xO3 (x ≤ 0.1) were prepared by mature screen-printing technology. The microstructures of the thick films sintered at 720 °C were examined by X-ray diffraction and scanning electron microscopy. The electrical properties were analyzed by measuring the resistance-temperature characteristics. For the BaBiO3 thick films, the room-temperature resistivity is 0.22 MΩ cm, while the room-temperature resistivity is sharply decreased to about 3 Ω cm by replacing of Bi with a small amount of Co. For compositions 0.02 ≤ x ≤ 0.1, the values of room-temperature resistivity (ρ23), thermistor constant (B25/85) and activation energy are in the range of 1.995-2.975 Ω cm, 1140-1234 K and 0.102-0.111 eV, respectively.  相似文献   

20.
Hui Li 《Vacuum》2008,82(5):459-462
The MgxZn1−xO films were prepared in different Ar-O2 mixture ambience by magnetron sputtering. According to the X-ray diffraction (XRD) patterns and the energy dispersive X-ray spectroscopy (EDS) results, it was found that the Mg contents in the films varied with the different ratios of O2/O2+Ar, and the crystal quality of the films improved with the increasing of Mg contents. Meanwhile, the ultraviolet and visible (UV-vis) absorption spectroscopy indicated that the band gap of the films also increased. Moreover, it could be seen that the photoluminescence (PL) spectrum was different from that of undoped Zinc oxide (ZnO) films or the results in other reports on the MgxZn1−xO films: there was no blueshift effect happening for the near-band-edge (NBE) emission in MgxZn1−xO films with different Mg contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号