首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure nickel thin films were deposited on Si (100) substrates under different conditions of sputtering using direct current magnetron sputtering from a nickel metal target. The different deposition parameters employed for this study are target power, argon gas pressure, substrate temperature and substrate-bias voltage. The films exhibited high density of void boundaries with reduction in <111> texture deposited under high argon gas pressures. At argon gas pressure of 5 mTorr and target power of 300 W, Ni deposition rate was ~40 nm/min. In addition, coalescence of grains accompanied with increase in the film texture was observed at high DC power. Ni films undergo morphological transition from continuous, dense void boundaries to microstructure free from voids as the substrate-bias voltage was increased from −10 to −90 V. Furthermore, as the substrate temperature was increased, the films revealed strong <111> fiber texture accompanied with near-equiaxed grain structure. Ni films deposited at 770 K showed the layer-by-layer film formation which lead to dense, continuous microstructure with increase in the grain size.  相似文献   

2.
采用射频磁控溅射法在Si(100)衬底上沉积了Ba0.65Sr0.35TiO3薄膜.借助XRD、AFM和SEM研究了衬底温度、退火温度、溅射气压等不同的溅射参数对Ba0.65Sr0.35TiO3薄膜的晶化行为和显微结构的影响.在室温下沉积并未经退火处理的Ba0.65Sr0.35TiO3 薄膜是无定形态,在较高温度下沉积的薄膜晶化相对较好;随着在氧气气氛中退火温度的升高,X射线衍射峰的半峰宽变窄,衍射峰强度增强;在0.37~1.2Pa气压下沉积的Ba0.65Sr0.35TiO3薄膜有(110)和(200)主衍射峰,且其强度随溅射气压的增加而增强;当溅射气压继续升到3.9Pa,(110)和(200)衍射峰明显增强,说明Ba0.65Sr0.35TiO3 薄膜具有(110) (200)择优取向.AFM和SEM结果显示薄膜晶粒细小均匀、结构致密、表面平整,且无裂纹、无孔洞.分析结果显示优化工艺参数制备的Ba0.65Sr0.35TiO3 薄膜是用以制备非致冷红外探测器的优质材料.  相似文献   

3.
We propose a new high-rate reactive sputter-deposition method with two sputtering sources for fabricating TiO2 films. One source operates in a metal mode sputtering condition and supplies titanium atoms to the substrate. The other source operates in oxide mode and works as an oxygen radical source for supplying oxygen radicals to the substrate surface for promoting oxidization of titanium atoms. Each sputtering source is separated with a mesh grid from the deposition chamber, and Ar and oxygen gas are introduced separately through the titanium supply and oxygen radical sources, respectively. By using this reactive sputtering system, a deposition rate above 80 nm/min can be obtained for the deposition of TiO2 films with rutile structure.  相似文献   

4.
利用中频脉冲直流磁控溅射法制备了平面ZnO:Al(AZO)透明导电薄膜,研究了沉积压力、衬底温度和溅射功率对AZO薄膜光电性能、薄膜稳定性的影响.结果表明:在较低沉积压力、衬底温度及溅射功率下,可获得具有低电阻率、高透过率、高稳定性的AZO薄膜.  相似文献   

5.
在室温下利用射频磁控溅射法在硅(100)基片上制备ZnO薄膜,利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结晶性能进行分析。研究了制备条件对薄膜沉积速率的影响。分析了薄膜沉积速率对薄膜结晶状况的影响及源气体中的氧气和氩气的流量比对薄膜结晶状况的影响。研究结果表明,薄膜的生长速率强烈依赖于射频功率和工作气压,薄膜的结晶性能强烈依赖于薄膜的沉积速率和反应气体中氧气和氩气的流量比。制备高结晶质量的ZnO薄膜的最佳工艺参数为靶到衬底的距离为4cm,输入功率为250W,源气体中氩气和氧气的流量比n(Ar)∶n(O2)为5∶20,溅射工作气压为2Pa。在最佳工艺条件下所制备的薄膜表面平整致密,接近单晶,在可见光区的透射率高达90%。  相似文献   

6.
采用反应射频(RF)磁控溅射法在n型(100)单晶S基片上沉积了ZrO2膜,研究了氧分压与ZrO:薄膜的表面粗糙度和沉积速率、SiO2中间界层的厚度以及ZrO2薄膜的折射率之间关系。结果表明:随着氧分压增高,薄膜的沉积速率降低,表面粗糙度线性地增加;在低的氧分压情况下,Si基片表面的本征SiO2层的厚度增加幅度较小,在高的氧分压情况下,Si基片表面的本征SiO2层的厚度有较大幅度地增加;在O2/Ar混和气氛下,溅射沉积的ZrO2薄膜的折射率受氧分压的影响不显著,而在纯氧气气氛环境下,ZrO2薄膜的折射率明显偏低,薄膜的致密性变差。  相似文献   

7.
用射频磁控反应溅射法,以高纯Si为靶材,高纯O2为反应气体,在白宝石上制备SiO2薄膜。对影响薄膜生长的工艺参数进行了分析,测试了薄膜的成分,并研究了薄膜的红外光学性能。结果表明,制备的薄膜中Si和O形成SiO2化学键,计算出的O与Si的原子比接近2:1,采用射频磁控反应溅射法在白宝石上能够沉积出SiO2薄膜。制备出的SiO2薄膜对白宝石衬底有较好的增透作用。  相似文献   

8.
《Thin solid films》1986,135(2):219-228
Tin-doped indium oxide (ITO) films were prepared by d.c. magnetron sputtering of an In-Sn alloy target, and the influence of the sputtering gas atmosphere and substrate temperature on their electrical properties was studied.The conditions for the deposition of the transparent ITO films were divided into three regions by varying the sputtering gas pressure. The first region was characterized by a high efficiency of oxygen gas consumption for film formation and a high deposition rate. In the second region the as-deposited films contained slightly less than the stoichiometric amount of oxygen. The third region was characterized by a low efficiency of oxygen consumption and a low deposition rate. The ratio of the amount of oxygen consumed to the amount of oxygen admitted to the sputtering chamber was about 15% when films with resistivities as low as 6 × 10-4Ω cm were prepared at the optimum oxygen partial pressure.In the case of metallic deposited in an oxygen-poor atmosphere the carrier mobility, which mainly depends on the crystal structure, increased and the carrier concentration, which depends on the number of oxygen vacancies and donor centres, decreased with increasing substrate temperature. The opposite results were obtained for films deposited in an oxygen-rich atmosphere. Well-defined grain growth was observed, particularly for metallic films deposited at high substrate temperatures, and this caused the low carrier mobility.Subsequent heat treatment improved the resistivity of films deposited at substrate temperatures below 100°C, mainly because of the increase in carrier mobility, but it had little effect on the resistivity of films deposited at substrate temperatures above 150 °C because the increase in carrier mobility was cancelled by the decrease in carrier concentration.  相似文献   

9.
Superconducting YBa2Cu3Ox thin films were deposited on NdGaO3 (110) substrates using two different techniques: dc sputtering at high oxygen pressure and pulsed laser deposition. The structure, electrical properties, and surface morphology of the obtained films were compared. The superior crystal quality of dc-sputtered films fabricated at the same temperature and at oxygen pressure of the same range as for laser-deposited films can be explained by a lower deposition rate providing time for recrystallization processes. The re-evaporation becomes significant for dc sputtering at high deposition temperatures and results in Badeficient films. The high mobility of atoms on the surface of the growing film during laser deposition helps in the formation of smoothc-oriented areas of the film.  相似文献   

10.
射频磁控反应溅射制备Al2O3薄膜的工艺研究   总被引:4,自引:4,他引:4  
祁俊路  李合琴 《真空与低温》2006,12(2):75-78,111
采用射频磁控反应溅射法,以高纯Al为靶材,高纯O2为反应气体,在不锈钢和单晶Si基片上成功地制备了氧化铝(Al2O3)薄膜,并对氧化铝薄膜的沉积速率、结构和表面形貌进行了研究.结果表明,沉积速率随着射频功率的增大先几乎呈线性增大而后缓慢增大;随着溅射气压的增加,沉积速率先增大,在一定气压时达到峰值后继续随气压增大而减小,同时随着靶基距的增大而减小;随着氧气流量的不断增加,靶面溅射的物质从金属态过渡到氧化物态,沉积速率也随之不断降低.X射线衍射图谱表明薄膜结构为非晶态;用原子力显微镜对薄膜表面形貌观察,薄膜微结构为柱状.  相似文献   

11.
蓝宝石衬底上制备SiO2薄膜的研究   总被引:2,自引:0,他引:2  
采用射频磁控反应溅射法,以高纯Si为靶材,高纯O2为反应气体,成功地在蓝宝石基片上制备出了二氧化硅(SiO2)薄膜,并对薄膜的沉积速率、成分、结构及红外光学性能进行了研究.结果表明,制备的SiO2薄膜与蓝宝石衬底结合牢固;和其它镀膜技术相比,射频磁控反应溅射法可以在较低的温度下制备出SiO2薄膜;制备出的SiO2薄膜在3~5μm波段对蓝宝石衬底有明显的增透效果.  相似文献   

12.
Titanium oxide thin films (1–4 μm) were deposited on the porous Hastelloy-X substrates using the pulsed – DC magnetron sputtering technique and characterized by X–ray diffraction (XRD) and scanning electron microscopy (SEM) methods. Firstly, the films were deposited at different distances between the magnetron and the substrate, as magnetron current and pressure in the deposition chamber were constant. The distance between the magnetron and the substrate was changed from 3 cm to 7 cm, and the deposition rate varied between 10.1 nm/min to 6.0 nm/min. Secondly, pressure influence for the deposition rate was investigated. The deposition rate decreased nearly 15% with the decrease of oxygen pressure from 1.3 to 6.0 Pa. Finally, the influence of the bias (applied to the substrate for the increase of deposition rate) on thin films phase and microstructure was investigated.The experimental results showed that formation of pure titanium oxide thin films was observed in all experimental cases. Only crystallite sizes and orientation were changed. The results showed that there is a possibility to change porosity and uniformity of the growing film by changing oxygen partial pressure during deposition or bias application to the substrate. The existence of columnar boundaries and nanocrystalline structure in the films was observed.  相似文献   

13.
《Vacuum》2011,85(12):1377-1380
We propose a new high-rate reactive sputter-deposition method with two sputtering sources for fabricating TiO2 films. One source operates in a metal mode sputtering condition and supplies titanium atoms to the substrate. The other source operates in oxide mode and works as an oxygen radical source for supplying oxygen radicals to the substrate surface for promoting oxidization of titanium atoms. Each sputtering source is separated with a mesh grid from the deposition chamber, and Ar and oxygen gas are introduced separately through the titanium supply and oxygen radical sources, respectively. By using this reactive sputtering system, a deposition rate above 80 nm/min can be obtained for the deposition of TiO2 films with rutile structure.  相似文献   

14.
The objective of the present work is to investigate the effect of various sputtering parameters such as nitrogen flow rate,deposition time and sputtering pressure on structural,wettability and optical properties of titanium oxynitride films deposited on glass substrate by reactive magnetron sputtering.The X-ray diffraction graphs of titanium oxynitride films show evolution of various textures of TiO_xN_y and TiN phases with increasing nitrogen flow rate and deposition time,but an increase in sputtering pressure from 4.0 to 8.0 Pa results in decline of various textures observed for TiO_xN_y and TiN phases.The stress and strain calculated by sin~2Ψ method are compressive,which decrease with increasing nitrogen flow rate from 55 to 100 sccm(standard cubic centimeter per minute) and increase with increasing deposition time from 80 to 140 min due to atomic penning effect and increasing thickness of the deposited films.The titanium oxynitride films have contact angle values above 90 deg.,indicating that films are hydrophobic.The maximum contact angle of 109.1 deg.is observed at deposition time of 140 min.This water repellent property can add value to potential protective,wear and corrosion resistant application of titanium oxynitride films.The band gap decreases from 1.98 to 1.83 eV as nitrogen flow rate is increased from 55 to 100 sccm;it decreases from 1.93 to 1.79 eV as deposition time is increased from 80 to 140 min as more nitrogen incorporation results in higher negative potential of valence band N2p orbital.But it increases from 2.26 to 2.34 eV for titanium oxynitride films as sputtering pressure increases from 4.0 to 8.0 Pa.  相似文献   

15.
Xiao Qiong Wen  Jun Wang 《Vacuum》2010,85(1):34-38
Diamond-like carbon (DLC) films were deposited on the inner surface of 304-type stainless steel tube with an inner diameter of 10 mm by DC glow discharge plasma. The influence of the deposition time, pressure and the ratios of CH4 in CH4/Ar gas mixture on the DLC film deposition were investigated. The images of Scanning Electron Microscopy (SEM) show that the DLC films are featureless and free of porosity. Fibre-like structure was recognized on the film surface by Atomic Force Microscopy (AFM). The film deposition rate decreases with increasing the deposition time. Relative higher deposition rate (40 nm/min) can be obtained at 20-30 Pa, higher and lower pressure will significantly decrease the deposition rate. Raman spectrum analysis shows that the films deposited in 30 min at 20-30 Pa have more sp3 content. The corrosion resistance of the films was measured by potentiodynamic polarization test. The DLC films deposited on the inner surface of the 304-type stainless steel tube significantly improve its corrosion resistance.  相似文献   

16.
Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characterized with X-Ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy measurements, showed a composed structure of Cu3N crystallites with anti-ReO3 structure and a slight oxidation of the resulted film.The crystal structure and growth rate of Cu3N films were affected strongly by substrate temperature. The preferred crystalline orientation of Cu3N films were (111) and (200) at RT, 100℃. These peaks decayed at 200℃ and 300℃ only Cu (111) peak was noticed. Growth of Cu3N films at 100℃ is the optimum substrate temperature for producing high-quality (111) Cu3N films. The deposition rate of Cu3N films estimated to be in range of 18-30 nm/min increased while the resistivity and the microhardness of Cu3N films decreased when the temperature of glass substrate increased.  相似文献   

17.
Using mirror-confinement-type electron cyclotron resonance (ECR) plasma sputtering method, strontium titanate (SrTiO3) thin films have been prepared on Si and Pt/Ti/SiO2/Si substrates at a low substrate temperature (below 450 K) in a low pressure (2.7×10−2 Pa) environment of pure Ar and Ar/O2 mixture. Prepared film surfaces were very smooth regardless of high deposition rate (8.5 nm/min). The composition ratio Sr/Ti of Sr to Ti in the films varied with the distance between the target and the substrate. All as-deposited films on Si substrates were found to be amorphous and were crystallized by post-deposition annealing using an electric furnace at 650 K, i.e. approximately 250 K lower than annealing for films obtained by conventional RF magnetron sputtering. Post-deposition annealing of these films using millimeter-wave radiation decreased the crystallization temperature to a value of 550 K. Furthermore, all as-deposited films on Pt/Ti/SiO2/Si substrates by a plasma of Ar and O2 gas mixture were found to be crystallized regardless of no substrate heating.  相似文献   

18.
Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited on glass, polycarbonate (PC), and polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The substrate dc bias voltage varied from 0 V to 50 V. Structural, electrical and optical properties of the films were investigated. The deposition rate of ZnO:Al films on glass substrate initially increased with the bias voltage, and then decreased with further increasing bias voltage. It was found that the best films on glass substrate with a low as 6.2 × 10− 4 Ω cm and an average transmittance over 80% at the wavelength range of 500-900 nm can be obtained by applying the bias voltage of 30 V. The properties of the films deposited on polymer substrate, such as PC and PET, have a similar tendency, with slightly inferior values to those on glass substrate.  相似文献   

19.
Cubic boron nitride (c-BN) films produced by PVD and plasma-assisted CVD techniques typically exhibit undesired high compressive stresses. One of the effective and feasible methods to reduce stress and hence improve film adhesion has been a controlled addition of a third element into the film during deposition. In the present study, BN films were grown on to silicon substrates using reactive magnetron sputtering with a hexagonal BN target. An auxiliary flow of methane was mixed into argon and nitrogen as the working gas. The deposition was conducted at various methane flow rates at 400 °C substrate temperature, 0.2 Pa total working pressure, and − 250 V r.f. substrate bias. The microstructure of the deposited films was then examined in dependence of the methane flow rate. With increasing methane flow rate from 0 to approx. 2.0 sccm, the fraction of the cubic BN phase in the deposited films decreased gradually down to approx. 75 vol.%, whereas the film stress was reduced much more rapidly and almost linearly in relation to the methane flow rate. At 2.1 sccm methane, the stress became approx. 3 times reduced. Owing to the significantly decreased film stress, adherent, micrometer thick, cubic-phase dominant films can be allowed to form on silicon substrate. The microstructure of the films will be illustrated through FTIR and XRR.  相似文献   

20.
采用直流反应磁控溅射法制备了ITO透明导电薄膜,针对氧流量、溅射气压、溅射电流3种工艺参数对ITO薄膜电阻率和可见光区透射率的影响进行了分析和研究。结果表明:从ITO薄膜作为太阳电池用减反射层和电极出发,得到了工艺参数的优化值,分别为氧流量0.2 ml/min(标准状态),溅射气压3 Pa和溅射电流0.2 A,ITO薄膜的电阻率为3.7×10-3Ω.cm,透过率(550 nm)高达93.3%。另外,利用该优化工艺条件下制备的ITO薄膜作为电极和减反射层,制备了结构为ITO/n+-nc-Si∶H/-i nc-Si:H/p-c-Si/Ag的太阳能电池,电池开路电压Voc达到534.7mV,短路电流Isc达到49.24mA(3 cm2),填充因子为0.4228。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号