首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
传统推荐信任模型中单纯采用概率平均的方法得到推荐信任值,这种方法效率较低,而且难以抵抗联合欺诈行为。基于蚁群算法给出了一个寻找信任路径的算法,该算法通过多次循环选出多条较优的独立信任路径,在一定程度上可有效防止联合欺诈行为,并通过实验证明了它的有效性,适应现实的复杂网络环境。  相似文献   

2.
无线传感器网络(WSNs)会受到很多因素的影响,包括无线链路干扰,缺乏物理保护等,使其对于恶意节点的攻击显得很脆弱,从而成为妥协节点.为了解决这些网络安全问题,提出一种基于优化蚁群算法的信任模型.这个模型由信息素更新、路径质量评估、信任度评估和惩罚与奖励机制构成.此外,为了提高全局信息素计算的准确性,在计算全局信息素时引入了最优解保留策略.仿真结果表明:该信任模型具有更高的性能和可靠性,更加适合WSNs.  相似文献   

3.
为了解决蚁群算法易早熟于局部最优及收敛速度慢的问题,采用云模型理论来合理调控蚁群算法的随机性程度,分别提出针对蚁群算法参数、云模型参数以及较优路径判定的自适应调整策略,同时提出信息素分布状态的评价算法。针对多个TSP问题进行仿真实验,结果验证了提出的算法的高效性与稳定性。  相似文献   

4.
为了避免蚁群算法陷入停滞状态,研究了信息素的更新规则,并在信息素增量更新式中加入动态调节因子,使得次优路径上的信息素增量较大,其他路径则没有明显的变化,从而有利于蚂蚁在较短的时间内找到更好的解。仿真实验结果及收敛过程表明,改进后的算法解决旅行商问题具有更好的全局搜索能力。  相似文献   

5.
研究货车调度优化问题,本文根据编组站到达场到达货车的情况,做出合理的解体计划,为出发列车及时安排足够多的车辆,建立配流模型。本文将货车调度问题描述成适合蚁群算法的形式,并进行初始化,考虑迭代过程中信息素对未来决策的影响程度,定义与问题相适应的转移概率,进而确定选择策略,同时在蚂蚁经过的路径上进行信息素的更新,实现对该问题的有效求解。实验结果验证了合理安排调度机制的有效性。  相似文献   

6.
王娅森  刘厚泉 《计算机仿真》2012,29(5):133-135,195
研究动态信息偏好捕捉精确度问题。网络数据存在重复性信息和随机性强。针对互联网中的大量数据,而造成了有效的信息的查找速度慢等缺陷,为了能够快速的获取更多的用户比较感兴趣信息,提出了一种改进的蚁群算法用户兴趣模式获取技术。面向层次结构的信息网站,算法首先根据网站和用户兴趣所具有的层次性特征,然后采用改进的蚁群算法较高的寻优机制,利用蚂蚁的觅食周期活动,从各个层次求出相应路径的信息素浓度,并适时的实行信息素更新机制,从而得到用户对该结点的偏好函数值,再依据此值求得用户兴趣模式。仿真结果表明,提出的方法能够有效地捕捉出用户兴趣信息,捕捉精确度较高,是一种有效的方法,具有一定的推广价值。  相似文献   

7.
针对多自治域环境中的域间信任关系动态的、不确定性等特点,提出了一种基于时间的动态信任关系模型.每个自治域都维护有一个描述该域和其他域之间的信任度的信任向量.在本模型中,两个域间的信任关系取决于时间和域间的互操作记录.基于蚁群算法给出了根据多自治域的当前环境来实时地计算域间信任关系的基本方法,当局部的信任度发生改变时,可以根据蚁群算法及时调整全局信任关系.最后,通过仿真实验验证了域间信任关系的建立及变化过程.  相似文献   

8.
基于变异和动态信息素更新的蚁群优化算法   总被引:65,自引:0,他引:65  
朱庆保  杨志军 《软件学报》2004,15(2):185-192
尽管蚁群优化算法在优化计算中已得到了很多应用,但在进行大规模优化时,其收敛时间过长仍是应用该算法的一个瓶颈.为此,提出了一种高速收敛算法.该算法采用一种新颖的动态信息素更新策略,以保证在每次搜索中,每只蚂蚁都对搜索做出贡献;同时,还采取了一种独特的变异策略,以对每次搜索的结果进行优化.计算机实验结果表明,该算法与最新的改进蚁群优化算法相比,其收敛速度提高了数十倍乃至数百倍以上.  相似文献   

9.
汪灏  张玉清 《计算机应用》2015,35(4):985-990
通过将网络节点推荐行为分析和网络恶意节点密度的自适应机制纳入信誉度评价过程,提出了基于蚁群算法的加强型可抵御攻击信任管理模型--EAraTRM,以解决传统信任模型因较少考虑节点的推荐欺骗行为而导致容易在恶意节点的合谋攻击影响下失准的问题。在对比研究中发现,EAraTRM可以在网络中恶意节点密度达到90%,其他传统信任模型已经失效的情况下,仍保持较高的正确性。实验结果表明,EAraTRM能提高节点评价其他节点信誉度时的精度,并降低整个网络中恶意节点间进行合谋攻击的成功率。  相似文献   

10.
蚁群算法也称蚂蚁算法,模拟生物蚂蚁觅食寻找最佳路径的行为,它由D.M等人提出.算法本质是在图中找出最佳路径.与神经网络等算法一样,是一种新的模拟进化方法.蚁群算法具有很多优良的特性和应用价值.该文对三种改进的蚁群算法进行了细致的阐述、分析与比较,得出它们的优势与不足之处.但是,基本的蚁群算法可能过早的陷入部分最优解且收...  相似文献   

11.
针对蚁群算法收敛速度慢、易陷入局部最优等问题,结合人工蜂群算法的分级思想,提出动态分级的双蚁态蚁群算法。根据适应度不同,将蚁群划分为寻优蚁和侦查蚁,并执行不同加权系数的动态信息素更新策略:寻优蚁负责较优路径的搜索,执行较大权重的信息素更新策略,以增强其导向性,提高算法收敛速度。侦查蚁则负责探索非较优路径,发现其他更优解,以保证算法多样性。然后,每次迭代结束则两类蚂蚁进行优良解交换,以提高解的质量。以旅行商问题为例,将其与经典蚁群算法、最新蚁群改进算法以及其他最新优化算法进行对比,其表现皆更优。  相似文献   

12.
在路网中,为了使用户的出行时间降到最低,提出一个适用于多OD对的路网的动态用户均衡离散模型,并应用蚁群算法求解动态用户均衡问题.通过设计一个算例,利用仿真得出路网中的流量分配数据,并和二次规划Frank-Wolfe算法求解的流量分配数据进行比较,最后得出蚁群算法在求解动态交通用户均衡问题时具有一定的优势.  相似文献   

13.
尚鲜连  牛丽  陈静 《计算机时代》2010,(3):11-12,18
针对基本蚁群算法易陷入局部最优,收敛速度慢等不足,提出了一种多态自适应蚁群算法:首先引入不同种类的蚁群,每种蚁群有各自不同的信息素调节机制;其次采用自适应调整信息素挥发因子的策略,并将各条寻优路径上可能的残留信息素数量限制在一个区间内,避免出现停滞现象。仿真结果验证了文章所提算法的可行性和有效性。  相似文献   

14.
针对蚁群算法搜索初期收敛速度慢和容易陷入局部最优的问题,对蚁群算法进行改进.在初始化阶段,采用贪心策略构造次优路径并增加该路径上的信息素浓度,实现不同路径上信息素的初始分配,使信息素在搜索初期就能发挥指导性作用,让蚂蚁更快地趋向于最优解的附近;在迭代寻优过程中,引入遗传变异操作,对每次迭代后的最优路径作变异操作,尝试寻...  相似文献   

15.
为了提高SVM的分类器性能,提出使用蚁群算法来指导SVM模型参数的选择,并针对采用RBF作为核函数的SVM进行了实验。然后将该方法与基于GA的SVM模型选择方法进行了比较。实验证明采用蚁群算法具有一定的优势,它能在较短的时间内寻找到最优解,且最终得到的分类结果优于遗传算法。  相似文献   

16.
基于蚁群算法的SVM模型选择研究   总被引:3,自引:0,他引:3  
为了提高SVM的分类器性能,提出使用蚁群算法来指导SVM模型参数的选择,并针对采用RBF作为核函数的SVM进行了实验。然后将该方法与基于GA的SVM模型选择方法进行了比较。实验证明采用蚁群算法具有一定的优势,它能在较短的时间内寻找到最优解,且最终得到的分类结果优于遗传算法。  相似文献   

17.
高健  顾垚江 《测控技术》2019,38(3):11-15
针对蚁群算法在求解旅行商问题时收敛时间长,且易陷入局部最优状态的缺陷,提出一种基于拥挤度的动态信息素蚁群优化策略。该算法引入静态拥挤度和动态拥挤度算子,主动提前预防停滞现象。将拥挤度与状态转移规则相结合,使蚁群状态实时跟随路径搜索情况而改变,提高蚁群自适应能力。针对蚁群路径搜索情况,加入邻域搜索优化规则,缩小搜索区域,结合2-opt局部优化策略,加快蚁群收敛速度。仿真结果表明,本算法既有较高的搜索效率又有较强的全局搜索能力。对比其他优化算法,无论是求解质量、稳定性还是收敛速度都能达到令人满意的效果。  相似文献   

18.
蚁群优化算法求解TSP问题研究   总被引:2,自引:0,他引:2  
介绍了信息素混合更新的蚁群优化算法,并用来求解TSP问题。混合信息素更新的蚁群优化算法是在蚁群系统(ACS)的基础上改进而成的,它在演化过程中,通过改变信息素的迭代最优更新规则和全局最优更新规则的使用频率,逐渐增加全局最优更新规则的使用频率,从而提高系统收敛的速度和减少系统搜索的导向性,并以Oliver30和att48为例给出了实验结果,说明了该混合算法的有效性。  相似文献   

19.
蚁群算法是优化领域新出现的一种启发式仿生类并行智能进化系统,该算法采用分布式计算和正反馈机制,易于和其他算法结合,目前已得到了广泛的应用。本文在介绍基本蚁群算法的基础上,介绍了蚁群算法目前的一些研究情况,然后例举了蚁群算法的一些应用,最后对蚁群算法今后的研究方向作了分析和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号