首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.  相似文献   

2.
Compound ceramic coatings prepared on Ti–6Al–4V alloy by pulsed bi-polar micro-plasma oxidation (MPO) in NaAlO2 solution were oxidized under different temperature in air. The phase composition and surface morphology of the coatings before and after oxidation were investigated by X-ray diffractometry and scanning electron microscopy, respectively. Meantime, the weight gains and the high temperature oxidation characteristics of the coated samples were investigated. The results show that the coatings prepared by MPO were composed of a large amount of Al2TiO5 and a little -Al2O3 and rutile TiO2. And the oxidation process of the coated samples included the decomposition of the Al2TiO5 in the coating, the oxidation of the substrate and the changes of the coating structure. After high temperature oxidation, the increase of -Al2O3 in the coating was due to the decomposition of Al2TiO5, whereas the increase of rutile TiO2 in the coating was attributable to both the decomposition of Al2TiO5 and the oxidation of the Ti substrate. The main crystalline of the coatings became rutile TiO2 after the oxidation of 1000 °C for 1 h. The decomposition of Al2TiO5 in the coating occurred at 900 and 1000 °C, and its half decomposition time was less than 1 h at 1000 °C. Increasing oxidation temperature or extending oxidation time, the weight gains of coated samples was increased to different extent. However, the weigh gains of the coated samples was much lower than that of the substrate, so the ceramic coatings improved the oxidation resistance of Ti alloy greatly under the experimental conditions.  相似文献   

3.
Amorphous silica coatings have been deposited by plasma assisted chemical vapor deposition (PACVD) process on M2 steel and 304 stainless steel substrates. The chemical inertia of the coating has been established by resonant quartz crystal microbalance (RQCM), and no porosity has been observed at the AFM scale. The barrier effect has been evaluated on M2 steel by applying the concept of dipolar relaxation. The protection is very efficient, and no deleterious galvanic coupling with the uncoated metallic surface can occur.

A coated stainless steel was also investigated in NaCl solution in order to understand how the passive properties are influenced by such a barrier coating. When deposited on stainless steel, coated part keeps the beneficial passive behaviour inherent to the substrate. They evidence almost no corrosion. The silica based layer behaves as a quasi perfect dielectric. The corrosion rate is then greatly reduced, and the pitting resistance is improved. The excellent localized corrosion protection has been explained by a tiny porosity rate, and a limited access of chloride ions through open pores.  相似文献   


4.
Corrosion and wear in the hot gas area of thermal energy plants are severe problems, which often cause premature damage of components. In general, the most components of plants are made of materials, which are not stable under corrosive conditions. For corrosion protection (and also wear protection) and lifetime extension of these components, coatings with more resistant materials are applied. Because of the high concentration of corrosive species and the alternating composition of the atmosphere near to the components, the waste incineration plant is the “worst case” of high temperature corrosion. Nowadays, the most usual coating process to protect pipes in the waste incineration plants is cladding. In the last few years, alternative processes are under investigation because cladding is very cost‐intensive. The specific costs of thermal spraying are much lower than those of cladding. In addition, the coating by thermal spraying reduces the risk of the dilution of substrate and coating material, different materials can be combined (e.g. metal alloys, ceramics) and the thickness of the layer for an acceptable resistance according to corrosion and wear can be drastically reduced. Thermal spraying has the potential to create cost‐efficient coatings to protect components in the critical zones of incineration plants. Since many years, ATZ Entwicklungszentrum is involved in the development and/or advancement of materials, technologies and applications of thermal spraying for corrosion and/or wear protection in thermal energy plants. The main focuses of the investigations are layers for components in high temperature areas of waste incineration plants. On the basis of the present results, different coatings (metal alloys, ceramics) and different spray technologies (e.g. HVOF, APS) have been tested by different strategies (corrosion tests under laboratory scale, air cooled material probes inside the hot gas area of an incineration plant and coated pipes in operation as part of the superheater of incineration plants). This paper will give an overview about the current results of these corrosion tests, in which the focus are the investigations with material probes. First results showed that with the combination of different thermal sprayed layers a significant corrosion protection can be achieved.  相似文献   

5.
Fe-Al金属间化合物对钢表面增强工艺参数的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
张德库  王克鸿  张晶  赵楠 《焊接学报》2010,31(12):85-88
进行了Q235钢表面的预制粉末覆层的等离子熔覆,研究了等离子熔覆工艺对熔覆层表面成形的影响,在此基础上得到了合适的熔覆工艺参数.进行了熔覆层组织的金相分析及熔覆层显微硬度测量与分析.结果表明,熔覆电流、焊枪摆动频率、熔覆速度的改变均能引起热输入的明显变化,影响熔覆层组织形态,基体熔化程度,以及界面的结合状态,进而影响熔覆层的耐磨性及耐腐蚀性.试验条件下的最佳熔覆工艺参数为熔覆电流130 A,熔覆速度5 cm/m in,焊枪摆动幅度4 mm,摆动频率0.4 Hz.  相似文献   

6.
爆炸焊钛/钢复合板已广泛应用火电厂脱硫烟囱内筒制备领域。钛/钢复合板制造电厂烟囱内筒,兼具钛板耐腐蚀的特点和钢种的优点,可以满足烟囱内筒的长期运行,确保烟囱结构的使用寿命,同时降低了成本,使得该产业符合了节约能源和保护生态环境的产业结构,越来越受到众多电厂用户青睐。本试验模拟实际工业中烟囱所处的腐蚀环境,比较了有氧化皮、去除氧化皮两种状态下的钛板的耐腐蚀特性,结果显示:有氧化皮试样的平均腐蚀速率为0.5 μm/a,去除氧化皮试样的平均腐蚀速率为1.5 μm/a。去除氧化皮试样的平均腐蚀速率是由氧化皮试样的3倍。对钛氧化皮成分进行分析,显示主要是金红石型TiO2。金红石型的晶型结构均由相互连接的TiO2八面体组成,它具有耐高温、耐低温、耐腐蚀、高强度等优异性能。根据试验结果,在成品打磨工序中取消去除氧化皮打磨工序,每张复合板可以缩短工期两天,减少打磨成本。  相似文献   

7.
In tribological applications the coating-substrate combination can be considered as a system, since both greatly influence the properties of that affect the tribological performance. Further, it is often desirable that both high wear resistance and corrosion resistance can be achieved even when low cost and easily machineable substrate materials are considered. Duplex surface treatment combining pulse plasma nitriding and PVD coating can provide solution for excellent wear and corrosion resistance for low alloy and constructional steels.In this work three different pulse plasma nitriding processes were carried out prior to the CrN/NbN PVD coating to attain high surface hardness and enhanced load bearing behaviour for S154 high strength construction steel. The phase composition of the compound layer, formed in the nitriding process, was found to greatly affect the tribological properties of the duplex system. The compound layer with high amount of ?-phase contributed to superior corrosion and wear resistance, whereas the ductile γ'-phase compound layer provided better impact resistance and enhanced. The best duplex treated S154 samples had wear resistance comparable to that of similarly coated HSS. The corrosion resistance was also improved by duplex process. If anodic current at + 500 mV vs. SCE is considered as criteria, the best system has almost 3 orders of magnitude lower corrosion current than with the PVD coating alone.  相似文献   

8.
Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.  相似文献   

9.
Customers’ demands for higher-quality hot-dip coated products have led to improved technology for hot-dip coating lines. Because modern hot-dip coating lines operate continuously, the equipment on the line must perform to exacting standards. Current technology in hot-dip lines has transformed the process to the extent that hot-dip products are routinely used for exposed automotive body panel applications. Emerging technologies in hot-dip coating strive to increase the consistency of hot-dip lines and to improve the quality of hot-dip products through a better understanding of the process and implementation of better measurement, control, and production technologies.  相似文献   

10.
Thermal spray coatings have been commonly applied on medical devices for various reasons, e.g., surface roughening, biological fixation, and similarity of chemical composition to bone minerals. Generally, to introduce a thermal spray-coated device to the US market, a premarket review of the coated device is necessary by the US Food and Drug Administration (FDA). This article aims to improve understanding regarding FDA review of thermal spray coatings in orthopedic medical device marketing applications and expectations for information to be submitted as part of this process. While different thermal spray technologies and materials have been used for coatings on medical devices, thermal spray coatings often seen by the FDA on orthopedic devices include plasma-sprayed titanium (Ti) coatings and hydroxyapatite (HA) coatings as well as Ti/HA dual coatings. The coated devices are mostly metals (e.g., Ti alloy, cobalt-chromium alloy, stainless steel alloys) and some polymers (e.g., polyetheretherketone). The FDA does not clear or approve individual coatings or materials; rather, coatings and materials are evaluated as part of the final, finished medical device in the context of the specific device technological characteristics and intended use. The FDA has two current guidance documents for orthopedic implants with modified metallic surfaces and hydroxyapatite coatings, which outline the FDA’s recommendations for full characterization and testing of these two types of coatings, respectively. Additionally, the standards organizations (e.g., ISO and ASTM) have developed many materials and testing standards for these coatings, some of which are recognized by the FDA. It is helpful that the coating companies reference these standards for appropriate material/coating specifications, testing methods, and acceptance criteria. Depending on the intended use of the coated device, it is important that coating properties also address some items specific to that device type. Additionally, the impact of cleaning, sterilization, and packaging/shelf-life processes on the coating properties is also considered to ensure that the coated device is safe for its intended use.  相似文献   

11.
超硬材料系列镀覆产品及应用   总被引:14,自引:5,他引:14  
以真空微蒸发镀覆技术为核心,围绕各类高性能超硬材料工具的不断开发应用,目前已经形成了超硬磨料镀覆系列产品。包括镀覆一层金属的超硬磨料,如镀钛、镀钨的金刚石;镀覆合金的超硬磨料,如镀钛-铬合金的金刚石;真空微蒸发镀覆之后再经电镀形成的多层复合超硬磨料,如复合镀Ti-Ni的金刚石等。这些系列镀覆产品分别适用于金属粉末烧结工具、钎焊工个和树脂结合剂工具,以于提高工具质量、降低制造成本和新产品开发有显著作用。新近研制成功的一种适用于树脂结合剂工具的刚玉涂覆的超硬磨料,克服了镀镍、镀铜超硬磨料镀覆成本高及使工具变钝的缺点,是树脂工具升级换代的新产品。  相似文献   

12.
A significant driver in research activities of manufacturers and university institutions is the improvement of tool life for cutting tools. Recent publications have shown that the substrate pre-treatment prior to coating as well as defined rounding of cutting edges are key factors for cutting tool life. Different technologies are used for substrate pre-treatment, depending on the machining task, flexibility of the process and economic aspects. However regarding the surface quality two opposing requirements come into conflict. While high surface quality supports the chip removal during machining, the film adhesion between substrate and coating is greater on rough surfaces. This paper presents a comparison of the abrasive flow machining (AFM) and laser ablation technologies as pre-treatment processes for cemented carbides. With respect to the relevant processing parameters, the effects of a pre-treatment using AFM and laser ablation on roughness, surface topography, mechanical activation and chemical composition have been determined.  相似文献   

13.
利用等离子喷涂方法制备Al2O3-40% TiO2涂层,对涂层进行激光重熔处理.分别对等离子喷涂层和激光重熔涂层进行耐冲蚀磨损性能试验,研究了激光重熔对Al2O3-40% TiO2等离子喷涂层耐冲蚀性能的影响.结果表明,激光重熔消除了Al2O3-40% TiO2等离子喷涂层的层状结构,使得等离子喷涂层中γ-Al2O3转变为α-Al2O3,形成了α-Al2O3+TiAl2O5稳定结构.激光重熔后的涂层组织致密均匀、硬度高,具有冶金结合特征,使得耐冲蚀性能得到极大提高,其磨损特征为冲蚀粒子冲击作用下产生的裂纹、破碎与块状剥落.  相似文献   

14.
感应熔覆制备镍基合金涂层的研究进展   总被引:1,自引:1,他引:0  
在实际的工业应用中,大部分工件处于交变载荷、高应力以及强腐蚀的环境中,严峻的服役条件将会大大缩短工件的实际使用寿命。工件表面往往直接接触不利因素,所以工件的整体失效基本是从表面开始。熔覆涂层技术是一种常见的金属材料表面处理技术,可以大幅度改善工件表面性能,且具备生产效率高、生产成本低、可获得大面积熔覆层等优点,受到了人们的广泛关注。熔覆涂层的制备技术主要有激光熔覆、氩弧熔覆、等离子熔覆以及高频感应熔覆。其中,高频感应熔覆技术的应用成本较低。以高频感应熔覆技术为支撑,对高频感应熔覆技术路线进行阐述,主要包括预处理、涂层预制、感应熔覆等,并对各过程中可能对熔覆质量造成影响的因素进行阐述。最后对镍基合金涂层(镍基复合涂层、原位合成制备镍基复合涂层)的制备工艺进行综述,并对制备过程中存在的部分问题及今后的发展方向进行综述。  相似文献   

15.
复合镀覆Ti—Ni金刚石的钎焊应用   总被引:4,自引:2,他引:2  
镀覆技术的研究进展表明:经过真空微蒸发镀钛、钨的金刚石单晶或聚晶,可以采用化学镀或电镀的方法在钛或钨镀层上进一步镀覆镍、钴、铬等金属,这种复合镀层与金刚石界面强力冶金结合,并且可以采用各种钎焊方法实现金刚石与多种金属基体的焊接。复合镀覆的金刚石可用于各类表镶工具的制造,获得高出刃、高磨粘结合强度,使金刚石表镶工具的使用寿命和加工效率大幅度提高。  相似文献   

16.
采用Ni-Cr钎料真空钎焊镀钛CBN磨粒和45号钢。用扫描电子显微镜、能谱仪、X射线衍射仪综合分析镀钛CBN磨粒的焊后形貌,磨粒与Ni-Cr钎料连接界面的微观结构和钎焊后磨粒表面的生成物。发现:钎焊过程中Ni-Cr钎料沿钛镀层爬升,对磨粒浸润性良好。焊后CBN磨粒出露部分的钛镀层在Ni原子的扩散下转变为Ni-Ti金属层。而在钎料包埋处,磨粒的钛镀层在钎焊过程中与CBN、Ni-Cr钎料相互扩散反应,生成了一层以NiTi和Ni0.3Ti0.7N为主的中间层,实现镀钛CBN磨粒和Ni-Cr钎料的冶金结合。   相似文献   

17.
The combination of traditional surface treatments such as nitriding with modern plasma-enhanced surface technologies reveals the possibility, particularly in the application to low alloy steels, of obtaining mechanical properties comparable with those of high alloy steels. Gas-nitrided samples of the hardened and tempered low alloy steels 30CrMoV9 and 17CrMoV10 were TiN coated by r.f. magnetron sputtering and ion plating. The requirements to obtain a nitrided substrate that can be coated were given special consideration. For this, various surface modifications of the nitrided substrates were realized by bright nitriding, nitriding with a compound layer and additional steps before coating, such as polishing, grinding and sputter cleaning.

The properties of prenitrided coated steels essentially depend on the structure and properties of the outer part of the nitrided case. TiN on bright nitrided and nitrided substrates with the compound layer removed has a better adherence than on compound layers. The decomposition of the iron nitride during the plasma sputter cleaning of compound layers results in a lower surface hardness and lower adherence of TiN. The highest wear resistances in the Timken test were registered on samples where the compound layer had been removed before TiN coating.  相似文献   


18.
表面工程技术在石油石化管道中的应用及展望   总被引:1,自引:1,他引:0  
石油石化行业中管道的服役工况十分恶劣,很多管道未达其设计寿命而失效报废,造成极大浪费,因此采用表面工程技术对其进行防护和修复具有十分重要的经济价值。主要阐述了热喷涂、自蔓延高温合成和表面镀层等三种表面工程技术对管道内外表面的强化机理,并对它们的实际应用进行了具体介绍。热喷涂技术主要介绍了电弧喷涂、火焰喷涂和等离子喷涂三种热喷涂技术,并分别从它们的工艺原理、适用材料体系、制备涂层性能(结合强度、孔隙率等)以及经济性等方面进行了对比介绍。高温自蔓延合成技术主要从材料和工艺两方面进行了剖析,并对其所制备陶瓷内衬管的连接方法进行了具体介绍。镀层技术主要对钨合金电镀和Ni-P化学镀两种镀层技术的优缺点和适用范围进行了对比介绍。最后针对表面工程技术的特点,对其在石油石化行业的前景进行了分析与展望。  相似文献   

19.
目的为了提高涂层硬质合金刀具的切削性能,研究了物理气相沉积PVD法制备的涂层硬质合金铣刀在高速干式环境下的铣削性能。方法采用阴极电弧技术制备了TiN、TiAlN以及TiAlSiN涂层硬质合金铣刀刀头,通过一同沉积涂层的硬质合金圆片,间接测量得出涂层的显微硬度、厚度和平均摩擦系数,并以CoCrMo合金为切削对象,进行了PVD涂层与无涂层刀具高速铣削下的对比试验。结果TiAlSiN显微硬度最高达3800HV,摩擦系数达0.3,TiAlN涂层平均膜厚为2μm,间接测得TiN、TiAlN以及TiAlSiN涂层的结合力依次为60、58、42N。在三者的切削性能中,TiAlSiN涂层的切削性能比TiAlN和TiN涂层的好,同等切削参数时,TiN刀具的高速铣削时间最短,TiAlSiN涂层的平均磨损值为0.1895,TiN的平均磨损值为0.3047。结论涂层中添加Al、Si,极大地提高了刀具的使用性能,改善了刀具切削过程中的耐磨性、红硬性,极大地延长了刀具的使用寿命。TiAlSiN涂层的硬度高,耐磨损性好,切削性能好,适合高速铣削加工。  相似文献   

20.
对AlN陶瓷基板进行了减压直流等离子体喷涂镀Al,在基板表面形成厚度约2μm的金属Al薄层,实现了Al与AlN中的良好接合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号