首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The effects of continuous exposure of cultured cells expressing the human norepinephrine transporter (hNET) to the hNET inhibitor desipramine on hNET expression and function were studied. Exposure of HEK-293 cells transfected stably with the hNET cDNA (293-hNET cells) to desipramine for 3 days reduced the specific binding of [3H]nisoxetine in membrane homogenates in a concentration-dependent manner. The magnitude of the reductions in [3H]nisoxetine binding to hNET was dependent on the length of time of the exposure to desipramine, reaching 77% after a 21-day exposure. The reduction of [3H]nisoxetine binding returned to control levels within 72 h after a 3-day exposure to desipramine. Reductions in [3H]nisoxetine binding to hNET were accompanied by time-dependent and exposure concentration-dependent reductions in hNET protein levels as determined by western blotting. Similar to binding, hNET protein levels returned to control levels 72 h after cessation of desipramine exposure. Northern blotting indicated that exposure of 293-hNET cells to desipramine did not significantly alter hNET mRNA levels. Uptake of [3H]norepinephrine by 293-hNET cells was markedly reduced after a 3-day exposure to desipramine. However, desipramine exposure had no effect on uptake of [3H]glutamate or [3H]alanine. The present findings imply that down-regulation of the hNET in 293-hNET cells induced by desipramine results from a selective reduction in hNET protein levels, presumably a consequence of either a reduction in the translation of hNET mRNA or from an enhanced degradation of hNET protein.  相似文献   

2.
A phenylene moiety in the chain of fatty acids was expected to impair metabolic degradation. Three phenoxy-containing [11C]carboxyl-labelled fatty acids were synthesized and evaluated in mice and an in vivo tissue distribution study. Of these three, 1[11C]-3-(p-dodecyloxyphenyl)propionic acid (C12C3) showed the most favourable uptake in the myocardium: 1.2% of the injected dose at 30 min p.i., vs. 0.6% for [11C]palmitate. The metabolic stability of C12C3 and [11C]palmitate was assessed by determining the amount of exhaled [11C]CO2 during a 30-min interval after injection. It was found that the phenoxy moiety in the gamma-position did not prevent the metabolic degradation of C12C3: After 30 min 20.7% of the injected dose was exhaled as [11C]CO2 vs. 12.7% for [11C]palmitate.  相似文献   

3.
1. Microdialysis of the frontal cortex of freely-moving rats and uptake of [3H]noradrenaline into cortical synaptosomes were used to evaluate changes in efflux of noradrenaline in vivo and uptake of [3H]noradrenaline in vitro, respectively, induced by the selective serotonin reuptake inhibitors (SSRIs), fluoxetine and citalopram, and the tricyclic antidepressant, desipramine. 2. Noradrenaline efflux was increased during local infusion into the cortex of each of these drugs. All three agents also inhibited synaptosomal uptake of [3H]noradrenaline; this inhibition was unaffected by a substantial (50%) lesion of central 5-hydroxytrytaminergic neurones induced by intracerebroventricular infusion of 5,7-DHT (150 microg). 3. A noradrenergic lesion (70%), induced by pretreatment with the selective neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4, 40 mg kg(-1) i.p.), 5 days earlier, abolished the increase in noradrenaline efflux caused by local infusion of fluoxetine. In contrast, the desipramine-induced increase in efflux was greater than in non-lesioned rats whereas the effect of citalopram on noradrenaline efflux was unaffected by DSP-4 pretreatment. 4. The combined results of all these experiments suggest that there could be more than one, functionally distinct, noradrenaline uptake site in rat frontal cortex which can be distinguished by their different sensitivities to desipramine and the SSRIs, fluoxetine and citalopram.  相似文献   

4.
[11C]A-84543, 3-[(1-[11C]methyl-2(S)-pyrrolidinyl)methoxy]pyridine, is a specific and enantioselective neuronal nicotinic acetylcholine receptor (nAChR) radiotracer. The in vivo biodistribution of this radiotracer in mice showed high brain uptake and a distribution consistent with the density of nAChRs. Highest uptake was observed in the thalamus (9.6 %ID/g), cortex (9.9 %ID/g), superior colliculus (7.6 %ID/g) and hippocampus (7.6 %ID/g) at 5 min followed by clearance. As a measure of specificity, the thalamus/cerebellar ratio reached a maximum of 2.3 at 30 min post-injection. Radioactivity in the thalamus and superior colliculus was reduced by 33% by pre-administration of unlabeled A-84543. The nAChR agonists (-)nicotine, cytisine, and (+) epibatidine reduced the radioactivity due to [11C]A-84543 in the superior colliculus by 41%, 38%, and 27%, respectively, while lobeline, which also interacts with central nAChRs, produced a 24% inhibition. The noncompetitive nAChR ligand, mecamylamine displayed no inhibitory effect on [11C]A-84543 accumulation in any brain region. Ketanserin (5-HT2/5-HT2C), scopolamine (mAChR antagonist), (+)butaclamol (DA receptor antagonist), and haloperidol (D2/sigma) also displayed no inhibitory effect in any brain region studied. With the pharmacologically less active enantiomer, 3-[(1-[11C]methyl-2(R)-pyrrolidinyl)methoxy] pyridine, high brain uptake was also observed, but with a low thalamus/cerebellar ratio of 1.4 at 30 min post-injection. [11C]A-84543 displays enantioselectivity for nAChRs and may deserve further investigation as a possible PET radiotracer.  相似文献   

5.
beta-CIT (2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane) is a cocaine analogue with a high affinity for the dopamine transporter. [11C] beta-CIT was prepared by N-methylation of nor-beta-CIT with [11C]methyl iodide. The total radiochemical yield of [11C] beta-CIT was 40-50% with an overall synthesis time of 35-40 min. The radiochemical purity was > 99% and the specific radioactivity at the time of injection was about 1000 Ci/mmol (37 GBq/mumol). Autoradiographic examination of [11C] beta-CIT binding in human brains post-mortem demonstrated a high level of specific binding in the striatum. PET examination of [11C] beta-CIT in a Cynomolgus monkey showed a marked accumulation of radioactivity in the striatum. The ratio of radioactivity in the striatum-to-cerebellum approached 5 after 87 min. In a displacement experiment, radioactivity in the striatum but not in the cerebellum, was markedly reduced after injection of unlabelled cocaine. [11C] beta-CIT has a potential as ligand for PET examination of cocaine effects in man.  相似文献   

6.
(-)-Norepinephrine is the principal neurotransmitter of the mammalian sympathetic nervous system and a major CNS neurotransmitter. The simple ring fluorinated derivatives of (-)- and (+)-norepinephrine [(-)- and (+)6-fluoronorepinephrine] and dopamine (6-fluorodopamine) have been labeled with 18F in high specific activity (2-5 Ci/mumol) and evaluated as tracers for (-)-norepinephrine. Comparative PET studies of (-) and (+)-6-[18F]fluoronorepinephrine [(-)-6-[18F]FNE and (+)-6-[18F]FNE] and 6-[18F]fluorodopamine (6-[18F]FDA) in the same baboon showed strikingly different kinetics in the heart. Analysis of plasma showed more rapid metabolism of 6-[18F]FDA with only 1%-2% of 18F remaining as parent tracer at 10 min after injection of 6-[18F]FDA, in contrast to 28% and 17% remaining after injection of (-) and (+)-6-[18F]FNE. No changes in vital signs were observed at any time during the study. Pretreatment with desipramine (0.5 mg/kg), a tricyclic antidepressant drug which interacts with a binding site associated with norepinephrine reuptake, markedly decreased cardiac uptake of 6-[18F]FDA and (-)-6-[18F]FNE. However, a greater blocking effect was observed for (-)-6-[18F]FNE. These studies show that (-) and (+)-6-[18F]FNE are similar to (-)- and (+)-norepinephrine in their patterns of metabolism and clearance in the heart and that (-)-6-[18F]FNE is a promising tracer for endogenous (-)-norepinephrine.  相似文献   

7.
[11C]L-159,884 ([11C] N-[[4'[(2-ethyl-5,7-dimethyl-3H- imidazo[4,5-b]pyridin-3-yl) methyl] [1,1'-biphenyl]-2-yl] sulfonyl]-4-methoxybenzamide) and [11C]L-162,574 ([11C] N-[[4'[2-ethyl-5,7- dimethyl-3H-imidazo[4,5-b] pyridin-3-yl)methyl] [1,1'-biphenyl]-2-yl]sulfonyl]-3- methoxybenzamide), both potent and selective ligands for the AT1 receptor, were prepared by C-11 methylation of the corresponding desmethyl phenolic precursors. The radiotracers were purified by semi-preparative reverse-phase HPLC. Non-decay corrected radiochemical yields were 5 and 3% for L-159,884 and L-162,574 respectively, and the average specific activity was 2979 mCi/mumol at end-of-synthesis (EOS). The average time of synthesis was 18 min.  相似文献   

8.
The cocaine analog 2 beta-carbomethoxy-3 beta-[4-iodophenyl]tropane (beta-CIT) labeled with 11C was used to study dopamine reuptake sites with PET. METHODS: Three normal subjects and nine patients with Parkinson's disease were investigated. Each of them underwent a dynamic PET scan (25 timeframes over 80 min) with [11C]-beta-CIT. A dose of 102.5-211.3 MBq (2.77-5.71 mCi) of this ligand was administered intravenously and a PET examination with an ECAT 931/08 PET camera was carried out. Ratios between the striatal/cortical/thalamic/midbrain and cerebellar uptake of this radioligand were calculated. RESULTS: The highest accumulation of [11C]beta-CIT was observed in the caudate and putamen, though there was some uptake in the thalamus and the midbrain. Cortical uptake was negligible. Carbon-11-beta-CIT accumulated significantly less in the putamen of the Parkinson's patients than in the normal subjects. The putamen-to-cerebellum ratio in the Parkinson's patients was 1.59 +/- 0.04 and 1.80 +/- 0.13s (p = 0.028) in the normal subjects. In the caudate, there was no significant difference between the Parkinson's patients and the normal subjects. CONCLUSION: These results imply that [11C]beta-CIT is a useful compound for carrying out a PET examination of the function of the presynaptic monoaminergic neurons both in normal and pathological brains.  相似文献   

9.
NNC 13-8241 has recently been labelled with iodine-123 and developed as a metabolically stable benzodiazepine receptor ligand for single-photon emission computed tomography (SPECT) in monkeys and man. NNC 13-8199 is a bromo-analogue of NNC 13-8241. This partial agonist binds selectively and with subnanomolar affinity to the benzodiazepine receptors. We prepared 76Br labelled NNC 13-8199 from the trimethyltin precursor by the chloramine-T method. Carbon-11 labelled NNC 13-8199 was synthesised by N-alkylation of the nitrogen of the amide group with [11C]methyl iodide. Positron emission tomography (PET) examination with the two radioligands in monkeys demonstrated a high uptake of radioactivity in the occipital, temporal and frontal cortex. In the study with [76Br]NNC 13-8199, the monkey brain uptake continued to increase until the time of displacement with flumazenil at 215 min after injection. For both radioligands the radioactivity in the cortical brain regions was markedly reduced after displacement with flumazenil. More than 98% of the radioactivity in monkey plasma represented unchanged radioligand 40 min after injection. The low degree of metabolism indicates that NNC 13-8199 is metabolically much more stable than hitherto developed PET radioligands for imaging of benzodiazepine receptors in the primate brain. [76Br]NNC 13-8199 has potential as a radioligand in human PET studies using models where a slow metabolism is an advantage.  相似文献   

10.
This article describes a new method of [11C]choline synthesis for intravenous injection. We aimed at the utilization of this compound for brain tumor imaging with PET. METHODS: After [11C]carbon dioxide production in a cyclotron and the subsequent [11C]methyl iodide synthesis, [methyl-11C]choline was synthesized by the reaction of [11C]methyl iodide with "neat" dimethylaminoethanol at 120 degrees C for 5 min. Purification was achieved by evaporation of the reactants followed by passage of the aqueous solution of the product through a cation-exchange resin cartridge. The time required for overall chemical processing, excluding the cyclotron operation, was 15 min. Radiochemical yield was > 98%. Radiochemical purity was > 98%. Chemical purity was > 90% (dimethylaminoethanol was the only possible impurity). Specific radioactivity of the product was > 133 GBq/mumol. The whole body distribution was examined in rabbits with PET. Clinical studies were performed in patients with brain tumor using PET after intravenous injection of 370 MBq of [11C]choline. RESULTS: In rabbits,[11C]choline was taken up from blood by various tissues very rapidly, and the radioactivity remaining in blood became almost negligible 5 min after intravenous injection. Taking advantage of this characteristic, we obtained stable tissue distribution images of human brain using PET. In patients with brain tumor, PET produced clearly delineated positive images of the tumors. CONCLUSION: Carbon-11-choline can be used for obtaining clear images of brain tumor in PET.  相似文献   

11.
In order to examine the uptake of L-serine into brain structures and brain metabolic compartments, L-[U-14C]serine was injected into tail vein of mice. The uptake was examined 30 min, 90 min, 3 h and 5 h after injection by both quantitative autoradiography of coronal brain sections and by biochemical analysis. Brain radioactivity was extracted and partitioned into protein associated pellets, metabolites soluble in aqueous phase and lipids soluble in the organic phase. Most of the radioactivity was found in the aqueous phase, about 10% was incorporated into lipids. Among phospholipids the highest label was found in phosphatidylserine, then in phosphatidylethanolamine and in phosphatidylcholine, it amounted to 52%, 30% and 18% of label by 90 min after injection, respectively. The brain distribution of L-serine uptake resembled that described for strychnine-insensitive [3H]glycine binding, with cortical structures being preferentially labelled.  相似文献   

12.
The present study describes extraction fraction and uptake measurements of the [11C]methyl triphenyl phosphonium (11C-MTP), a promising positron emission tomography (PET) agent for cardiac imaging. PET imaging was performed in mongrel dogs. Under physiological flow conditions 11C-MTP uptake reached a maximum within the first 10 minutes after injection and remained constant during the entire observation period of 80 minutes. Over the same time period, the heart/blood ratio was 46-106:1, and the heart/lung ratio 14:1. Following permanent occlusion of the left anterior descending coronary artery, 11C-MTP uptake in the normally perfused myocardium also reached a maximum at 10 minutes after injection, whereas in the infarcted area there was no significant accumulation of 11C-MTP. For a time period of 80 minutes the noninfarcted/infarcted myocardium ratio was 12:1. Extraction was measured in anesthetized dogs with a double isotope method using 99mTc-HSA as the reference tracer. The extraction fraction was 91% at a flow of 69 mL/min/100g. As flow increased to five-fold (342 mL/min/100g) following administration of adenosine, extraction fell to 61%. Following coronary artery occlusion, the 11C-MTP content in the myocardium was highly correlated (r = 0.93, p < 0.01; y = 10.46 + 0.92x) with the microsphere determined regional myocardial blood flow.  相似文献   

13.
Two analogues of the potent 5-HT1A antagonist WAY 100635 have been synthesized and radiolabelled with 18F, namely N-[2-[4-(2-2'-[18F] fluoroethoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xan e carboxamide ([18F]FEC) and N-[2-[4-(2-3'-[18F] fluoropropoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cycloh exa ne carboxamide ([18F]FPC). Biodistribution studies in rats showed selective uptake of both radiotracers in regions known to be rich in 5-HT1A receptors following i.v. injection. The ratio of radioactivity in hippocampus to that in the cerebellum was 5.5 (for [18F]FEC) and 7.5 (for [18F]FPC) at 60 min postinjection. Regional brain heterogeneity of radioactivity could be abolished by pretreatment with WAY 100635 and FPC but was unaffected by pretreatment with a variety of drugs including ketanserin, sulpiride, and SCH 23390. These results are compared vis-a-vis with those obtained using [11C]WAY 100635 to evaluate [18F]FEC and [18F]FPC as potential radiotracers for imaging 5-HT1A receptors by positron emission tomography.  相似文献   

14.
The sympathomimetic drug phenylephrine recently has been labeled with 11C for use in PET studies of cardiac sympathetic innervation. Previous reports using isolated perfused rat heart models indicate that phenylephrine is metabolized by intraneuronal monoamine oxidase (MAO). This report compares the imaging characteristics, neuronal selectivity and kinetics of (-)-[11C]phenylephrine (PHEN) to the structurally similar but MAO-resistant analog (-)-[11C]-meta-hydroxyephedrine (HED), an established heart neuronal marker. METHODS: Fourteen healthy volunteers were studied with PET and PHEN. Ten had paired studies with HED; four of the 10 were scanned a second time with each tracer after oral administration of desipramine, a selective neuronal transport blocker. Hemodynamic and electrocardiographic responses were monitored. Blood levels of intact radiotracer and radiolabeled metabolites were determined from venous blood samples taken during the PET study. Myocardial retention indices for both tracers were calculated. RESULTS: No hemodynamic or electrocardiographic effects were observed with either tracer. PHEN showed reduced myocardial retention at 50 min compared to HED; however, image quality and uniformity of distribution were comparable. PHEN cleared from myocardium with a mean half-time of 59 +/- 5 min, while myocardial levels of HED remained constant. PHEN metabolites appeared in the blood approximately three times faster than HED metabolites. Desipramine pretreatment markedly reduced (> 60%) myocardial retention of both PHEN and HED. CONCLUSION: PHEN provides PET images of human heart comparable in quality and uniformity to HED. Like HED, PHEN localizes in the sympathetic nerves of the heart. However, the more rapid efflux of PHEN, that is likely mediated by MAO, may provide information on the functional status of cardiac sympathetic neurons unobtainable with HED.  相似文献   

15.
The purpose of this study was to determine whether aging alters neuronal uptake of norepinephrine (NE) in the rat heart and if dietary restriction influenced the effect of age on this system. Cardiac synaptosomes were prepared from 6-, 12- and 24-month-old male F344 rats fed ad libitum (AL) or a diet restricted (DR) to 60% of AL intake. Cardiac synaptosomes were incubated with 50, 100, 200, or 400 nM [3H]NE for 10 min at 37 degrees C with and without desmethylimipramine (DMI), a selective neuronal-uptake blocker. DMI-sensitive [3H]NE uptake was calculated as the difference between samples with and without DMI. NE uptake was adjusted for the number of cardiac synaptosomes in each sample by dividing by the endogenous NE content in each sample. The Vmax for uptake ([3H]NE/min/ng NE) declined significantly between 6 and 12 months in AL rats and between 12 and 24 months in DR rats. Km was not significantly different between age or diet groups. The change in Vmax with age suggests that the number of NE transporters per synaptosome may decline with age and that DR delays this effect of age. There were no differences in the sensitivity to DMI between age or diet groups.  相似文献   

16.
The metabolism of irbesartan, a highly selective and potent nonpeptide angiotensin II receptor antagonist, has been investigated in humans. An aliquot of pooled urine from healthy subjects given a 50-mg oral dose of [14C]irbesartan was added as a tracer to urine from healthy subjects that received multiple, 900-mg nonradiolabeled doses of irbesartan. Urinary metabolites were isolated, and structures were elucidated by mass spectroscopy, proton NMR, and high-performance liquid chromatography (HPLC) retention times. Irbesartan and the following eight metabolites were identified in human urine: (1) a tetrazole N2-beta-glucuronide conjugate of irbesartan, (2) a monohydroxylated metabolite resulting from omega-1 oxidation of the butyl side chain, (3, 4) two different monohydroxylated metabolites resulting from oxidation of the spirocyclopentane ring, (5) a diol resulting from omega-1 oxidation of the butyl side chain and oxidation of the spirocyclopentane ring, (6) a keto metabolite resulting from further oxidation of the omega-1 monohydroxy metabolite, (7) a keto-alcohol resulting from further oxidation of the omega-1 hydroxyl of the diol, and (8) a carboxylic acid metabolite resulting from oxidation of the terminal methyl group of the butyl side chain. Biotransformation profiles of pooled urine, feces, and plasma samples from healthy male volunteers given doses of [14C]irbesartan were determined by HPLC. The predominant drug-related component in plasma was irbesartan (76-88% of the plasma radioactivity). None of the metabolites exceeded 9% of the plasma radioactivity. Radioactivity in urine accounted for about 20% of the radiolabeled dose. In urine, irbesartan and its glucuronide each accounted for about 5 to 10% of the urinary radioactivity. The predominant metabolite in urine was the omega-1 hydroxylated metabolite, which constituted about 25% of the urinary radioactivity. In feces, irbesartan was the predominant drug-related component (about 30% of the radioactivity), and the primary metabolites were monohydroxylated metabolites and the carboxylic acid metabolite. Irbesartan and these identified metabolites constituted 90% of the recovered urinary and fecal radioactivity from human subjects given oral doses of [14C]irbesartan.  相似文献   

17.
12-Hydroxyeicosatetraenoic acid (12-HETE) is one of the major metabolites formed from arachidonic acid in platelets. We have recently shown that the in vitro metabolism of 12-HETE by human leukocytes, with and without stimulation, is effectively inhibited by the addition of physiological concentrations of albumin, probably by sequestration of the compound. In the present paper, we have studied the in vivo metabolism of 12-HETE in the rabbit, using either [1-14C]- or [14C(U)]12-HETE. Distribution of radioactivity was followed in urine, plasma, and bile, as well as in a number of tissues. In most of the tissues examined, the hydrophilic radioactivity constituted more than 50% of the total radioactivity after 20 min. When the lipophilic fraction was analyzed, around 15% of the radioactivity was shown to be unesterified 12-HETE, and only a very minor part could be detected as metabolites. The dominating lipophilic compound in the circulation after i.v. administration of radiolabeled 12-HETE was at all time points (1-60 min.) the parent compound, as analyzed by HPTLC and HPLC. A comparison of the plasma metabolite profiles obtained when [1-14C]- and [14C(U)]12-HETE were used displayed almost identical patterns, thus indicating that beta-oxidized metabolites either were not formed or were rapidly removed from the circulation. The appearance of large amounts of water-soluble radioactivity with time supported the latter conclusion. Several minor metabolites were seen that chromatographed in the dihydroxy acid region as judged by HPLC and TLC. The major one of these compounds represented about 10% of the lipophilic plasma radioactivity after 60 min., while unmetabolized 12-HETE at this stage still represented about 30%. The metabolite had a polarity similar to 12,20-dihydroxyeicosatetraenoic acid; however, when chromatographed together, these two compounds separated, indicating a different structure of the metabolite. Our findings are in agreement with in vitro data concerning the protective effect of albumin on the metabolism of 12-HETE and is the first extensive metabolic study of 12-HETE in vivo covering all metabolic possibilities involving the carbon skeleton.  相似文献   

18.
In contrast to the increased uptake of amino acids which has been found in many neoplastic cells, we have observed a decrease in the net uptake of [14C]aspartate and [14C]glutamate in rapidly growing hepatomas relative to rat host liver. When measured 10 min after s.c. injection, the radioactivity from 14C-labeled dicarboxylic amino acids was greater in liver than in all other tissues examined (blood, skeletal, muscle, heart, spleen, lung, and brain) except kidney, where there was an approximately 2-fold greater uptake of aspartate and 10-fold greater uptake of glutamate. Mean uptakes in the rapidly growing Morris hepatomas 7288CTC and 7777 were 19 to 26% of corresponding values for the host livers. Comparison with uptake of 3H2O indicated that these low values were not solely due to differences in circulation. Decreased uptake was not accompanied by equivalent decreases in the concentration of aspartate and glutamate in the tumors. There were small changes in the net uptake of these amino acids in the slowly growing hepatoma 7787 and no significant differences in regenerating liver and hepatoma 5123C, a tumor of intermediate growth rate. The net uptake of [14C]arginine and [14C]lysine in the hepatomas was similar to that in host livers, except for a 250% increase in uptake of [14C]lysine in hepatoma 5123C. A decreased uptake of the magnitude seen with dicarboxylic amino acids in rapidly growing hepatomas has not been observed with other amino acids.  相似文献   

19.
Synthesis of 1-[11C]methylpiperidin-4-yl propionate ([11C]PMP), an in vivo substrate for acetylcholinesterase, is reported. An improved preparation of 4-piperidinyl propionate (PHP), the immediate precursor for radiolabeling, was accomplished in three steps from 4-hydroxypiperidine by (a) protection of the amine as the benzyl carbamate, (b) acylation with propionyl chloride, and (c) deprotection of the carbamate by catalytic hydrogenation. The final product was obtained in an overall 82% yield. Reaction of the free base form of PHP with [11C]methyl trifluoromethanesulfonate at room temperature in N,N-dimethylformamide, followed by high performance liquid chromatography (HPLC) purification, provided [11C]PMP in 57% radiochemical yield, > 99% radiochemical purity, and > 1500 Ci/mmol at the end of synthesis. The total synthesis time from end-of-bombardment was 35 min. [11C]PMP can thus be reliably prepared for routine clinical studies of acetylcholinesterase in human brain using positron emission tomography.  相似文献   

20.
The effects of blockade of serotonin (5-HT) and norepinephrine (NE) transporters (SERT and NET, respectively) on the removal of locally applied 5-HT from extracellular fluid (ECF) were examined using in vivo chronoamperometry. Male Sprague-Dawley rats were anesthetized with chloralose/urethane, and a Nafion-coated, carbon fiber electrode attached to a multibarrel micropipette was positioned into either the dentate gyrus or CA3 region of the dorsal hippocampus. Pressure ejection of 5-HT elicited reproducible electrochemical signals of similar peak amplitude and time course in both structures. Local application of the selective serotonin reuptake inhibitors (SSRI) fluvoxamine and citalopram prolonged the clearance of 5-HT in both brain regions and also increased signal amplitude in the CA3 region. These effects were abolished in rats pretreated with 5, 7-dihydroxytryptamine (5,7-DHT), a selective 5-HT neurotoxin. The NE uptake inhibitors desipramine (DMI) and protriptyline did not alter the 5-HT signal in the CA3 region but prolonged the clearance of 5-HT in the dentate gyrus; this effect was absent in rats pretreated with 6-hydroxydopamine (6-OHDA), a selective catecholamine neurotoxin. The prolongation of the removal of 5-HT from the ECF in the dentate gyrus caused by fluvoxamine or desipramine was of comparable magnitude and was dose dependent. Furthermore, per picomole of 5-HT applied, the signal amplitude and clearance time were significantly increased in the dentate gyrus of rats lesioned with either 5,7-DHT or 6-OHDA. Only 5,7-DHT treatment caused this effect in the CA3 region. From these data, it is inferred that in certain regions of brain (dentate gyrus), both the SERT and NET contribute to the active clearance of exogenously applied 5-HT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号