首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk nanostructured materials have recently emerged as a new paradigm for improving the performance of existing thermoelectric materials. Here, we fabricated two kinds of bulk nanostructured thermoelectric materials by a bottom-up strategy and an in situ precipitation method, respectively. Binary PbTe was fabricated by a combination of chemical synthesis and hot pressing. The grain sizes of the hot pressed bulk samples varied from 200 nm to 400 nm, which significantly contributed to the reduction of thermal conductivity due to the enhanced boundary phonon scattering. The highest figure of merit ZT of the binary PbTe sample reached 0.8 at 580 K. Mg2(Si,Sn) solid solutions have shown great promise for thermoelectric application, due to good thermoelectric properties, non-toxicity, and abundantly available constituent elements. The nanoscale microstructure observation of the compounds showed the existence of nanophases formed in situ, which is believed to be related to the relatively low lattice thermal conductivity in this material system. The highest ZT of Sb-doped Mg2(Si,Sn) samples reached 1.1 at 770 K.  相似文献   

2.
3.
To study the possibility of SnS as an earth-abundant and environmentally friendly thermoelectric material, the electrical and thermal transport properties of bulk materials prepared by combining mechanical alloying and spark plasma sintering were investigated. It was revealed that SnS has potential as a good thermoelectric material, benefiting from its intrinsically low thermal conductivity below 1.0 W/m/K above 400 K and its high Seebeck coefficient over 500 μV/K. Although the highest ZT value was 0.16 at 823 K in the pristine sample, further enhancement can be expected through chemical doping to increase the electrical conductivity. It was also revealed that changing the stoichiometric ratio and sintering temperature had less apparent influence on the microstructure and thermoelectric properties of SnS because redundant S in the powders decomposed during the sintering process.  相似文献   

4.
Application of a magnetic field greatly enhances the thermoelectric efficiency of bismuth-antimony (Bi-Sb) alloys. We synthesized a hybrid of Bi-Sb alloy and magnetic nanoparticles, expecting improvement of the thermoelectric performance due to the magnetic field generated by the nanoparticles. Powder x-ray diffraction and magnetic measurements of the synthesized hybrid Bi0.88Sb0.12(FeSb)0.05 sample indicated that the ferromagnetic FeSb nanoparticles, with a size of about 30 nm, were distributed in the main phase of the Bi-Sb alloy. The FeSb nanoparticles act as soft ferromagnets in the diamagnetic host Bi-Sb alloy. The electrical resistivity ρ of the host Bi0.88Sb0.12 sample decreased concomitantly with decreasing temperature, showing a shoulder at 80 K. In contrast, ρ for the hybrid sample was enhanced below 100 K because of carrier scattering by the nanoparticles. The temperature dependence of the Seebeck coefficient S was also altered by the nanoparticle addition. In contrast, the addition of magnetic nanoparticles only slightly influenced the thermal conductivity κ. These results indicate that the addition of magnetic nanoparticles to thermoelectric materials modulates the electronic structures but does not influence the lattice system.  相似文献   

5.
6.
7.
Sb-doped magnesium silicide compounds have been prepared through ball milling and solid-state reaction. Materials produced were near-stoichiometric. The structural modifications have been studied with powder x-ray diffraction. Highly dense pellets of Mg2Si1?x Sb x (0 ≤ x ≤ 0.04) were fabricated via hot pressing and studied in terms of Seebeck coefficient, electrical and thermal conductivity, and free carrier concentration as a function of Sb concentration. Their thermoelectric performance in the high temperature range is presented, and the maximum value of the dimensionless figure of merit was found to be 0.46 at 810 K, for the Mg2Si0.915Sb0.015 member.  相似文献   

8.
9.
We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures (T cold = 25°C to 90°C, T hot < 450°C) and mechanical loading (P = 0 N to 104 N). The proposed instrument is able to monitor the temperature and electrical output of the TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.  相似文献   

10.
11.
We present the study of the effect of Te substitution on the thermoelectric properties for Sb in Cu12Sb4?x Te x S13 tetrahedrite compounds with x ranging from 0.2 to 1.5 in the temperature range of room temperature to 723 K. Powder x-ray diffraction and electron microscopy results indicate a successful homogenous substitution without the alteration of the crystal structure or the introduction of secondary phases. Thermoelectric property measurements show that the excess electrons from Te during the substitution fill the unoccupied levels near the top of the valence bands in pure Cu12Sb4S13 compound, moving the Fermi level closer to the top of the valence bands. This leads to an enhancement in thermopower but also to an increase in electrical resistivity. Overall, the reduction in total thermal conductivity gives rise to improved ZT values in all substituted samples. The highest ZT value obtained in this study is 0.92 at 723 K for x = 1, which is comparable to that of other p-type bulk thermoelectric materials.  相似文献   

12.
13.
This work focused on the preparation of p-type Bi0.4Sb1.6Te3 bulk materials by combining mechanical alloying (MA) and hot extrusion, with emphasis on grain refinement and preferred grain orientation. Pure Bi, Sb, and Te powders were mechanically alloyed then hot extruded in the temperature range 360–450°C. Bi0.4Sb1.6Te3 bulk materials were successfully prepared by MA and hot extrusion. All the samples had sound appearance, with single phases and high densities. The hot-extruded samples had small grain sizes, and the lower the extrusion temperature, the smaller the grain sizes. The results indicated that the extrudates had preferred orientation. The basal plane was predominantly oriented parallel to the direction of extrusion. Similar Seebeck coefficients were obtained when extrusion temperature was in the range 380–420°C. Electrical resistivity decreased with increasing extrusion temperature. Thermal conductivity was relatively low, even if the extrusion temperature was 450°C. As a result, a ZT value of 1.2 was obtained at room temperature for the sample extruded at 400°C. Therefore, combination of MA and hot extrusion results in significant improvement of both the thermoelectric and mechanical performance of Bi0.4Sb1.6Te3 bulk materials.  相似文献   

14.
Novitskii  A. P.  Serhiienko  I. A.  Novikov  S. V.  Kuskov  K. V.  Leybo  D. V.  Pankratova  D. S.  Burkov  A. T.  Khovaylo  V. V. 《Semiconductors》2019,53(2):215-219
Semiconductors - The&nbsp; results &nbsp;of &nbsp;investigating &nbsp;the&nbsp; thermoelectric &nbsp;properties of the bulk р-type oxyselenides Bi1 –xPrxCuSeO (x...  相似文献   

15.
We have prepared Ce-doped polycrystalline AgSbTe2.01 compounds from high-purity elements by a melt-quench technique followed by spark plasma sintering, and their thermoelectric transport properties have been investigated in the temperature range of 300 K to 625 K. The actual concentration of Ce was much less than the initial composition, but roughly proportional to it. Small additions of Ce shifted the composition of the homogeneity range from the nearly ideal atomic ratio Ag:Sb:Te = 0.98:1.02:2.01 toward Sb rich (Ag poor), and led to the reemergence of Ag2Te impurity in AgSbTe2 compound. The Ce-doped samples possessed lower electrical conductivity compared with the undoped AgSbTe2.01 compound at room temperature, but the carrier mobility and effective mass were essentially constant, indicating intact band structure near the covalent band maximum upon Ce substitution for Sb. Due to the decrease of lattice vibration anharmonicity resulting from Ce substitution for Sb, the lattice conductivity of the Ce-doped samples was about 0.1 W m?1 K?1 higher than that of the AgSbTe2.01 sample, and the magnitude spanned the range from 0.30 W m?1 K?1 to 0.55 W m?1 K?1. A ZT of 1.20 was achieved at about 615 K for the AgSb0.99Ce0.01Te2.01 sample.  相似文献   

16.
n-Type PbTe compounds were synthesized at temperatures as low as 430°C. After synthesis, the materials were ground, cold pressed, and sintered at 600°C. The effect of this low-temperature synthesis on the structural features and thermoelectric properties of as-prepared and PbI2-doped materials was investigated for the first time. The Seebeck coefficient, and electrical and thermal conductivity were measured in the temperature range 2 K ≤ T ≤  610 K. The results show that all materials exhibit n-type conduction and the thermoelectric properties are improved by doping. ZT values reach 0.5 at 610 K, and the discrepancies with the literature are discussed.  相似文献   

17.
18.
SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.  相似文献   

19.
Bulk thermoelectric materials are of interest for commercial application in both power generation and Peltier refrigeration. Various synthesis approaches have been developed by our group for high performance bulk thermoelectric materials, such as solvo- or hydrothermal synthesis for nanopowders, hot-pressing, and spark plasma sintering for nanostructured bulk materials, and rapid solidification for metal silicides. In this article we report some of our recent results in the development of high ZT thermoelectric materials, including Bi2Te3-Sb2Te3 nanocomposites and CoSb3 micro/nanocomposites prepared by a powder blending route, and GeTe-AgSbTe2 and Mg2Si-Mg2Sn nanocomposites prepared by an in situ route. The results show various possibilities for improved microstructures and therefore enhanced properties of bulk thermoelectric materials through optimization of the preparation processing based on simple synthesis routes. A high ZT of approximately 1.5 has been obtained in both Bi2Te3-Sb2Te3 and GeTe-AgSbTe2 nanocomposites. Further ZT enhancement of the materials should be possible through the control of the nanopowder morphology during synthesis and the hindering of␣grain growth during sintering, as well as through the optimization of composition and doping.  相似文献   

20.
Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth’s crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1:x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号