首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6?×?1019?cm?3, large thermopower of 130???V?K?1, and large charge carrier mobility of 402?cm2?V?1?s?1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50?nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab?initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.  相似文献   

2.
A thermoelectric joint composed of p-type Bi0.5Sb1.5Te3 (BiSbTe) material and an antimony (Sb) interlayer was fabricated by spark plasma sintering. The reliability of the thermoelectric joints was investigated using electron probe microanalysis for samples with different accelerated isothermal aging time. After aging for 30 days at 300°C in vacuum, the thickness of the diffusion layer at the BiSbTe/Sb interface was about 30 μm, and Sb2Te3 was identified to be the major interfacial compound by element analysis. The contact resistivity was 3 × 10?6 ohm cm2 before aging and increased to 8.5 × 10?6 ohm cm2 after aging for 30 days at 300°C, an increase associated with the thickness of the interfacial compound. This contact resistivity is very small compared with that of samples with solder alloys as the interlayer. In addition, we have also investigated the interface behavior of Sb layers integrated with n-type Bi2Se0.3Te2.7 (BiSeTe) material, and obtained similar results as for the p-type semiconductor. The present study suggests that Sb may be useful as a new interlayer material for bismuth telluride-based power generation devices.  相似文献   

3.
Sb2Te3 and Bi2Te3 thin films were grown on SiO2 and BaF2 substrates at room temperature using molecular beam epitaxy. Metallic layers with thicknesses of 0.2?nm were alternately deposited at room temperature, and the films were subsequently annealed at 250°C for 2?h. x-Ray diffraction and energy-filtered transmission electron microscopy (TEM) combined with high-accuracy energy-dispersive x-ray spectrometry revealed stoichiometric films, grain sizes of less than 500?nm, and a texture. High-quality in-plane thermoelectric properties were obtained for Sb2Te3 films at room temperature, i.e., low charge carrier density (2.6?×?1019?cm?3), large thermopower (130???V?K?1), large charge carrier mobility (402?cm2?V?1?s?1), and resulting large power factor (29???W?cm?1?K?2). Bi2Te3 films also showed low charge carrier density (2.7?×?1019?cm?3), moderate thermopower (?153???V?K?1), but very low charge carrier mobility (80?cm2?V?1?s?1), yielding low power factor (8???W?cm?1?K?2). The low mobilities were attributed to Bi-rich grain boundary phases identified by analytical energy-filtered TEM.  相似文献   

4.
We report on the successful hydrothermal synthesis of Bi0.5Sb1.5Te3, using water as the solvent. The products of the hydrothermally prepared Bi0.5 Sb1.5Te3 were hexagonal platelets with edges of 200–1500 nm and thicknesses of 30–50 nm. Both the Seebeck coefficient and electrical conductivity of the hydrothermally prepared Bi0.5Sb1.5Te3 were larger than those of the solvothermally prepared counterpart. Hall measurements of Bi0.5Sb1.5Te3 at room temperature indicated that the charge carrier was p-type, with a carrier concentration of 9.47 × 1018 cm−3 and 1.42 × 1019 cm−3 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively. The thermoelectric power factor at 290 K was 10.4 μW/cm K2 and 2.9 μW/cm K2 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively.  相似文献   

5.
Introducing nanoinclusions in thermoelectric (TE) materials is expected to lower the lattice thermal conductivity by intensifying the phonon scattering effect, thus enhancing their TE figure of merit ZT. We report a novel method of fabricating Bi0.5Sb1.5Te3 nanocomposite with nanoscale metal particles by using metal acetate precursor, which is low cost and facile to scale up for mass production. Ag and Cu particles of ??40?nm were successfully near-monodispersed at grain boundaries of Bi0.5Sb1.5Te3 matrix. The well-dispersed metal nanoparticles reduce the lattice thermal conductivity extensively, while enhancing the power factor. Consequently, ZT was enhanced by more than 25% near room temperature and by more than 300% at 520?K compared with a Bi0.5Sb1.5Te3 reference sample. The peak ZT of 1.35 was achieved at 400?K for 0.1?wt.% Cu-decorated Bi0.5Sb1.5Te3.  相似文献   

6.
To investigate the effect of annealing in controlled atmosphere on the thermoelectric properties of Bi-Te film, Te-deficient Bi-Te film was deposited by sputtering, and then annealed with various Bi-Te alloy powders with different Te concentrations in a closed system at 250°C for 24?h. Bi-Te phases other than Bi2Te3 in the as-deposited film could be removed when the film was annealed with Bi-Te source powder containing 62?at.% or higher content of Te. At the same time, the values of Seebeck coefficient and carrier concentration of the films approach ?105???V/K and 3?×?1019?cm?3 to 6?×?1019?cm?3, respectively. This result indicates that mass transport of Te to the film takes place, resulting in the formation of Bi2Te3 phase and reduction of the amount of p-type carriers due to compositional change of the film from Te-deficient to stoichiometric. Annealing in controlled Te-vapor atmosphere is an effective method to improve the thermoelectric properties of Bi-Te film by changing the composition and phase of Te-deficient film to stoichiometric Bi2Te3 film.  相似文献   

7.
The present study focused on synthesis of Bi0.5Sb1.5Te3 thermoelectric powder using an oxide-reduction process. The phase structure and particle size of the synthesized powders were analyzed using x-ray diffractometry and scanning electron microscopy. The synthesized powder was sintered using the spark plasma sintering method. The thermoelectric properties of the sintered body were evaluated by measuring the Seebeck coefficient, electrical resistivity, and thermal conductivity. Bi0.5Sb1.5Te3 powder was synthesized using a combination of mechanical milling, calcination, and reduction processes, using a mixture of Bi2O3, Sb2O3, and TeO2 powders. The sintered body of the oxide-reduction-synthesized Bi0.5Sb1.5Te3 powder showed p-type thermoelectric characteristics. The thermoelectric properties of the sintered bodies depended on the reduction time. After being reduced for 2 h at 663 K, the sintered body of the Bi0.5Sb1.5Te3 powder showed a figure of merit of approximately 1.0 at room temperature.  相似文献   

8.
We demonstrated the fabrication of thin-film thermoelectric generators and evaluated their generation properties using solar light as a thermal source. Thin-film elements of Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type), which were patterned using the lift-off technique, were deposited on glass substrates using radiofrequency magnetron sputtering. After annealing at 300°C, the average Seebeck coefficients of p- and n-type films were 150???V/K and ?104???V/K, respectively, at 50°C to 75°C. A cylindrical lens was used to focus solar light to a line shape onto the hot side of the thin-film thermoelectric module with 15 p?Cn junctions. The minimum width of line-shaped solar light was 0.8?mm with solar concentration of 12.5 suns. We studied the properties of thermoelectric modules with different-sized p?Cn junctions on the hot side, and obtained maximum open voltage and power values of 140?mV and 0.7???W, respectively, for a module with 0.5-mm p?Cn junctions. The conversion efficiency was 8.75?×?10?4%, which was approximately equal to the value estimated by the finite-element method.  相似文献   

9.
In this study, we investigated the effect of the structure of microporous p-type (Bi0.4Te3Sb1.6) and n-type (Bi2.0Te2.7Se0.3) BiTe-based thin films on their thermoelectric performance. High-aspect-ratio porous thin films with pore depth greater than 1 μm and pore diameter ranging from 300 nm to 500 nm were prepared by oxygen plasma etching of polyimide (PI) layers capped with a heat-resistant block copolymer, which acted as the template. The cross-plane thermal conductivities of the porous p- and n-type thin films were 0.4 W m?1 K?1 and 0.42 W m?1 K?1, respectively, and the dimensionless figures of merit, ZT, of the p- and n-type BiTe films were estimated as 1.0 and 1.0, respectively, at room temperature. A prototype thermoelectric module consisting of 20 pairs of p- and n-type strips over an area of 3 cm × 5 cm was fabricated on the porous PI substrate. This module produced an output power of 0.1 mW and an output voltage of 0.6 V for a temperature difference of 130°C. The output power of the submicrostructured module was 1.5 times greater than that of a module based on smooth BiTe-based thin films. Thus, the thermoelectric performance of the thin films was improved owing to their submicroscale structure.  相似文献   

10.
Embedding nanosized particles in bulk thermoelectric materials is expected to lower the lattice thermal conductivity by enhancing the degree of interface phonon scattering, thus improving their thermoelectric figure of merit ZT. We have developed a wet chemical process to fabricate Bi0.5Sb1.5Te3-based thermoelectric nanocomposites which include nanometer-sized metal particles. By simple solution mixing of metal acetate precursors and Bi0.5Sb1.5Te3 powders in ethyl acetate as a medium for homogeneous incorporation, it is possible to apply various types of metal nanoparticles onto the surfaces of the thermoelectric powders. Next, bulk Bi0.5Sb1.5Te3 nanocomposites with homogeneously dispersed metal nanoparticles were fabricated using a spark plasma sintering technique. The lattice thermal conductivities were reduced by increasing the long-wavelength phonon scattering in the presence of metal nanoparticles, while the Seebeck coefficients increased for a few selected metal-decorated nanocomposites, possibly due to the carrier-energy-filtering effect. Finally, the figure of merit ZT was enhanced to 1.4 near room temperature. This approach highlights the feasibility of incorporating various types of nanoparticles into an alloy matrix starting by wet chemical routes, which is an effective means of improving the thermoelectric performance of Bi-Te-based alloys.  相似文献   

11.
p-Type Bi0.45Sb1.55Te3 thermoelectric (TE) thin films have been prepared at room temperature by a magnetron cosputtering process. The effect of postannealing on the microstructure and TE properties of Bi0.45Sb1.55Te3 films has been investigated in the temperature range from room temperature to 350°C. x-Ray diffraction analysis shows that the annealed films have polycrystalline rhombohedral crystal structure, and the average grain size increases from 36?nm to 64?nm with increasing annealing temperature from room temperature to 350°C. Electron probe microanalysis shows that annealing above 250°C can cause Te reevaporation, which induces porous thin films and dramatically affects electrical transport properties of the thin films. TE properties of the films have been investigated at room temperature. The hole concentration shows a trend from descent to ascent and has a minimum value at the annealing temperature of 200°C, while the Seebeck coefficient shows an opposite trend and a maximum value of 245?μV?K?1. The electrical resistivity monotonically decreases from 19.8?mΩ?cm to 1.4?mΩ?cm with increasing annealing temperature. Correspondingly, a maximum value of power factor, 27.4?μW?K?2?cm?1, was obtained at the annealing temperature of 250°C.  相似文献   

12.
p-Type antimony telluride (Sb2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputter deposition using a fan-shaped binary composite target. The deposition temperature was varied from 100°C to 300°C in increments of 50°C. The influence of the deposition temperature on the microstructure, surface morphology, and thermoelectric properties of the thin films was systematically investigated. x-Ray diffraction results show that various alloy composition phases of the Sb2Te3 materials are grown when the deposition temperature is lower than 200°C. Preferred c-axis orientation of the Sb2Te3 thin film became obvious when the deposition temperature was above 200°C, and thin film with single-phase Sb2Te3 was obtained when the deposition temperature was 250°C. Scanning electron microscopy reveals that the average grain size of the films increases with increasing deposition temperature and that the thin film deposited at 250°C shows rhombohedral shape corresponding to the original Sb2Te3 structure. The room-temperature Seebeck coefficient and electrical conductivity range from 101 μV K?1 to 161 μV K?1 and 0.81 × 103 S cm?1 to 3.91 × 103 S cm?1, respectively, as the deposition temperature is increased from 100°C to 300°C. An optimal power factor of 6.12 × 10?3 W m?1 K?2 is obtained for deposition temperature of 250°C. The thermoelectric properties of Sb2Te3 thin films have been found to be strongly enhanced when prepared using the fan-shaped binary composite target method with an appropriate substrate temperature.  相似文献   

13.
Se‐doped Mg3.2Sb1.5Bi0.5‐based thermoelectric materials are revisited in this study. An increased ZT value ≈ 1.4 at about 723 K is obtained in Mg3.2Sb1.5Bi0.49Se0.01 with optimized carrier concentration ≈ 1.9 × 1019 cm?3. Based on this composition, Co and Mn are incorporated for the manipulation of the carrier scattering mechanism, which are beneficial to the dramatically enhanced electrical conductivity and power factor around room temperature range. Combined with the lowered lattice thermal conductivity due to the introduction of effective phonon scattering centers in Se&Mn‐codoped sample, a highest room temperature ZT value ≈ 0.63 and a peak ZT value ≈ 1.70 at 623 K are achieved for Mg3.15Mn0.05Sb1.5Bi0.49Se0.01, leading to a high average ZT ≈ 1.33 from 323 to 673 K. In particular, a remarkable average ZT ≈ 1.18 between the temperature of 323 and 523 K is achieved, suggesting the competitive substitution for the commercialized n‐type Bi2Te3‐based thermoelectric materials.  相似文献   

14.
Thermoelectric thin films of the ternary compounds (Bi x Sb1?x )2Te3 and Bi2(Te1?y Se y )3 were synthesized using potentiostatic electrochemical deposition on gold-coated silicon substrates from aqueous acidic solutions at room temperature. The surface morphology, elemental composition, and crystal structure of the deposited films were studied and correlated with preparation conditions. The thermoelectric properties of (Bi x Sb1?x )2Te3 and Bi2(Te1?y Se y )3 films, i.e., Seebeck coefficient and electrical resistivity, were measured after transferring the films to a nonconductive epoxy support. (Bi x Sb1?x )2Te3 thin films showed p-type semiconductivity, and the highest power factor was obtained for film deposited at a relatively large negative potential with composition close to Bi0.5Sb1.5Te3. In addition, Bi2(Te1?y Se y )3 thin films showed n-type semiconductivity, and the highest power factor was obtained for film deposited at a relatively small negative potential, having composition close to Bi2Te2.7Se0.3. In contrast to Bi2Te2.7Se0.3 thin films, an annealing treatment was required for Bi0.5Sb1.5Te3 thin films to achieve the same magnitude of power factor as Bi2Te2.7Se0.3. Therefore, Bi2Te2.7Se0.3 thin films appear to be good candidates for multilayer preparation using electrochemical deposition, but the morphology of the films must be further improved.  相似文献   

15.
Considerable research effort has gone into improving the performance of traditional thermoelectric materials such as Bi2?x Sb x Te3 through a variety of nanostructuring approaches. Bottom-up, chemical approaches have the potential to produce very small nanoparticles (?100?nm) with narrow size distribution and controlled shape. For this study, nanocrystalline powder of Bi0.5Sb1.5Te3 was synthesized using a ligand-assisted chemical method, and consolidated into pellets with cold pressing followed by sintering in Ar atmosphere. The thermoelectric transport properties were measured from 7?K to 300?K as a function of sintering temperature. Sintering is found to increase ZT and to move the maximum in ZT to lower temperatures due to a reduction in the free charge concentration. Hall mobility studies indicate that sintering increases the electron mean free path more than it increases the phonon mean free path up to sintering temperature of 598?K. A maximum ZT of 0.42 was measured at temperature of 275?K.  相似文献   

16.
The intermetallic compound SnTe rapidly formed at interfaces between p-type bismuth telluride (Bi0.5Sb1.5Te3) thermoelectric materials and lead-free solders. The intermetallic compound influences the mechanical properties of the joints and the reliability of the thermoelectric modules. Various lead-free solder alloys, Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu, and Sn-2.5Ag-2Ni, were used to investigate the interfacial reactions. The results thus obtained show that Ag and Cu preferentially diffused into the Te-rich phase in Bi0.5Sb1.5Te3, so layers of Ag-Te and Cu-Te compounds could not form an effective diffusion barrier. Electroless nickel-phosphorus was plated at the interfaces to serve as a diffusion barrier, and the (Cu,Ni)6Sn5 compound formed instead of SnTe. Furthermore, the intermetallic compound NiTe formed between nickel- phosphorus and Bi0.5Sb1.5Te3 and also served as a diffusion barrier. A plot of thickness as a function of annealing time yielded the growth kinetics of the intermetallic compounds in the thermoelectric material systems. The activation energy for the growth of the NiTe intermetallic compound is 111 kJ/mol.  相似文献   

17.
The electrochemical behavior of nonaqueous dimethyl sulfoxide solutions of BiIII, TeIV, and SbIII was investigated using cyclic voltammetry. On this basis, Bi x Sb2−x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique in nonaqueous dimethyl sulfoxide solution, and the composition, structure, morphology, and thermoelectric properties of the films were analyzed. Bi x Sb2−x Te y thermoelectric films prepared under different potential ranges all possessed a smooth morphology. After annealing treatment at 200°C under N2 protection for 4 h, all deposited films showed p-type semiconductor properties, and their resistances all decreased to 0.04 Ω to 0.05 Ω. The Bi0.49Sb1.53Te2.98 thermoelectric film, which most closely approaches the stoichiometry of Bi0.5Sb1.5Te3, possessed the highest Seebeck coefficient (85 μV/K) and can be obtained under potentials of −200 mV to −400 mV.  相似文献   

18.
Nanostructured thermoelectric (TE) materials, for example Sb2Te3, PbTe, and SiGe-based semiconductors, have excellent thermoelectric transport properties and are promising candidates for next-generation TE commercial application. However, it is a challenge to synthesize the corresponding pure nanocrystals with controlled size by low-temperature wet-chemical reaction. Herein, we report an alternative versatile solution-based method for synthesis of plate-like Sb2Te3 nanoparticles in a flask using SbCl3 and Te powders as raw materials, EDTA-Na2 as complexing agent, and NaBH4 as reducing agent in the solvent (distilled water). To investigate their thermoelectric transport properties, the obtained powders were cold compacted into cuboid prisms then annealed under a protective N2 atmosphere. The results showed that both the electrical conductivity (σ) and the power factor (S 2 σ) can be enhanced by improving the purity of the products and by increasing the annealing temperature. The highest power factor was 2.04 μW cm?1 K?2 at 140°C and electrical conductivity remained in the range 5–10 × 103 S m?1. This work provides a simple and economic approach to preparation of large quantities of nanostructured Sb2Te3 with excellent TE performance, making it a fascinating candidate for commercialization of cooling devices.  相似文献   

19.
This report describes synthesis of binary Bi2Te3 and ternary Bi0.5Sb1.5Te3 single crystals using the halide chemical vapor transport technique. For synthesis of ternary Bi0.5Sb1.5Te3, BiBr3 is a more effective transport agent compared with iodine I2. The single crystal includes a few atomic percent of Br. The Bi0.5Sb1.5Te3 crystal shows p-type conduction and has a comparatively large residual resistivity ratio. The crystal exhibits relatively high electrical resistivity and high Seebeck coefficient. These high values are attributed to decrease of the hole concentration p due to doping of the transport agent Br.  相似文献   

20.
A liquid-phase growth process using a graphite sliding boat was applied for synthesis of p-type Bi0.5Sb1.5Te3. The process lasted only 60 min, including rapid heating for melting, boat-sliding, and cooling. Thick sheets and bars of 1 mm and 2 mm in thickness having preferable crystal orientation for thermoelectric conversion were successfully prepared by the process. Control of carrier concentration was attempted through addition of excess tellurium (1 mass% to 10 mass%) to optimize the thermoelectric properties of the material. The Hall carrier concentration was found to be decreased by addition of excess tellurium. The electrical resistivity and Seebeck coefficient varied depending on the carrier concentration. As a result, the maximum observed power factor near 300 K was 4.4 × 10?3 W/K2m, with corresponding Hall carrier concentration of 4.6 × 1025 m?3. Thus, thermoelectric properties were controllable by addition of excess tellurium, and a large power factor was thus obtained through a simple and short process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号