首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cognitive radio is a promising technique to dynamic utilize the spectrum resource and improve spectrum efficiency. In this paper, we study the problem of mutual interference cancellation among secondary users (SUs) and interference control to primary users (PUs) in spectrum sharing underlay cognitive radio networks. Multiple antennas are used at the secondary base station to form multiple beams towards individual SUs, and a set of SUs are selected to adapt to the beams. For the interference control to PUs, we study power allocation among SUs to guarantee the interference to PUs below a tolerable level while maximizing SUs?? QoS. Based on these conditions, the problem of joint power allocation and beamforming with SUs selection is studied. Specifically, we emphasize on the condition of imperfect channel sensing due to hardware limitation, short sensing time and network connectivity issues, which means that only the noisy estimate of channel information for SUs can be obtained. We formulate the optimization problem to maximize the sum rate as a discrete stochastic optimization problem, then an efficient algorithm based on a discrete stochastic optimization method is proposed to solve the joint power allocation and beamforming with SUs selection problem. We verify that the proposed algorithm has fast convergence rate, low computation complexity and good tracking capability in time-varying radio environment. Finally, extensive simulation results are presented to demonstrate the performance of the proposed scheme.  相似文献   

2.
Resource allocation under spectrum sensing based dynamic spectrum sharing strategy is a critically important issue for cognitive radio networks (CRNs), because they need to not only satisfy the interference constraint caused to the primary users (PUs), but also meet the quality-of-service (QoS) requirements for the secondary users (SUs). In this paper, we develop the optimal spectrum sensing based resource allocation scheme for the delay QoS constrained CRNs. Specifically, we aim at maximizing the maximum constant arrival rate of the SU that can be supported by the time-varying service process subject to the given statistical delay QoS constraint. In our derived power allocation scheme, not only the average transmit and interference power constraints are considered, but also the impact of the PUs?? transmission to the CRNs and the PUs?? spectrum-occupancy probability are taken into consideration. Moreover, the spectrum sensing errors are also taken into consideration. Simulation results show that, (1) the effective capacity of the secondary link decreases when the statistical delay QoS constraint becomes stringent; (2) given the QoS constraint, the effective capacity of the secondary link varies with the interference power constraint and the SNR of the primary link.  相似文献   

3.
This paper considers an underlay cognitive radio network with a full‐duplex cognitive base station and sets of half‐duplex downlink and uplink secondary users, sharing multiple channels with the primary user. The resource allocation problem to maximize the sum rate of all the secondary users is investigated subject to the transmit power constraints and the interference power constraint. The optimization problem is highly nonconvex, and we jointly use the dual optimization method and the successive convex approximation method to derive resource allocation algorithms to solve the problem. Extensive simulations are shown to verify the performance of the resource allocation algorithms. It is shown that the proposed algorithms achieve much higher sum rate than that of the optimal half‐duplex algorithms and the reference full‐duplex algorithms.  相似文献   

4.
认知无线电中基于Stackelberg博弈的分布式功率分配算法   总被引:1,自引:0,他引:1  
罗荣华  杨震 《电子与信息学报》2010,32(12):2964-2969
在underlay认知无线电场景中,为了让认知用户能随机地接入主用户正在使用的授权频段,且对主用户产生的干扰不高于主用户能够容忍的干扰温度门限,该文采用Stackelberg博弈机制进行认知用户的发射功率分配。将主用户作为模型中的leader,认知用户作为follower,认知用户使用主用户的授权频段时需以干扰功率为单位支付给主用户相应的费用,而主用户则可以通过调整价格,限制认知用户产生的总干扰功率不高于其所能容忍的干扰温度门限,以便获得最大收益。同时,不同认知用户间根据主用户制定的价格,进行非协作博弈。仿真结果表明,与集中式的最优功率分配算法相比,该文可通过简单的分布式功率分配算法获得与其相近的系统性能,且主用户与认知用户间只需进行少量的信息交互,这与需进行大量信息交互的集中式最优算法相比,具有较大的优势。  相似文献   

5.
贾亚男  岳殿武 《电子学报》2017,45(4):844-854
为最大化认知小蜂窝基站的能量效率,本文基于博弈论模型分析了下行联合频谱资源块和功率分配行为.在干扰受限环境下,多个基站采用分布式结构共享空闲频谱资源.为避免累加干扰损害主用户的通信,算法中引入了功率和干扰温度限制.由于具有耦合限制的分数形式的能量效用函数是非凸最优的,通过将其转化为等价的减数形式进行迭代求解.给定频谱资源块分配策略后,主博弈模型可被重新建模为便于求解发射功率的等价子博弈模型,并通过代价的形势解除耦合限制.仿真结果表明,本文所提算法能够收敛到纳什均衡,并有效提高了系统资源利用率和能量效率.  相似文献   

6.
林玉清  朱琦  酆广增 《信号处理》2010,26(12):1845-1851
随着无线通信业务的不断增长,频谱资源越来越紧缺,然而另一方面大量授权的无线频谱却被闲置或者利用率极低,于是认知无线电技术应运而生,已成为无线通信领域的研究热点。认知无线电的基本思想是次用户(认知用户)利用主用户(授权用户)未占用的空闲频谱进行通信,其可用无线资源是根据授权用户的频谱使用情况而动态变化的。因此,能否实现对系统可用无线资源的合理有效管理,对整个认知无线电系统性能的优劣起着决定性作用。本文提出了一种在干扰温度限制下基于公平的功率与信道联合分配算法,该算法在主用户干扰温度及次用户发射功率的双重限制下,以最大化系统容量为基本目标,实现信道与功率的联合分配,并且引入贫困线来保证各个用户信道分配的公平性。论文建立了该问题的非线性规划数学模型,给出了模型的求解方法,并进一步设计了具体分配算法及其步骤。论文对干扰门限分别为-90dBm、-95dBm、-100dBm、-105dBm、-110dBm时的系统归一化容量累积分布函数进行了仿真比较,发现当干扰门限越低时,本文算法的优势越明显。这是因为在干扰门限较低时,干扰温度限制是功率分配的主要制约因素,而本文的算法正是基于干扰门限进行分配的。因此基于干扰温度限制的公平的功率与信道联合分配算法具有良好的性能,在保证了系统的公平性效益的同时,提高了系统的归一化容量。   相似文献   

7.
As the scarce spectrum resource is becoming over-crowded, cognitive wireless mesh networks have great flexibility to improve the spectrum utilization by opportunistically accessing the licensed frequency bands. One of the critical challenges for realizing such network is how to adaptively allocate transmit powers and frequency resources among secondary users (SUs) of the licensed frequency bands while maintaining the quality-of-service (QoS) requirement of the primary users (PUs). In this paper, we consider the power control problem in the context of cognitive wireless mesh networks formed by a number of clusters under the total transmit power constraint by each SU as well as the mean-squared error (MSE) constraint by PUs. The problem is modeled as a non-cooperative game. A distributed iterative power allocation algorithm is designed to reach the Nash equilibrium (NE) between the coexisting interfered links. It offers an opportunity for SUs to negotiate the best use of power and frequency with each other. Furthermore, how to adaptively negotiate the transmission power level and spectrum usage among the SUs according to the changing networking environment is discussed. We present an intelligent policy based on reinforcement learning to acquire the stochastic behavior of PUs. Based on the learning approach, the SUs can adapt to the dynamics of the interference environment state and reach new NEs quickly through partially cooperative information sharing via a common control channel. Theoretical analysis and numerical results both show effectiveness of the intelligent policy.  相似文献   

8.
采用合作博弈对多信道认知无线网络中的频谱共享问题进行了建模分析,提出了次用户在各信道上的信干噪比乘积作为合作博弈的效用函数。次用户在各信道上保证对主用户的干扰小于一定门限的要求下,通过最大化各自效用函数的乘积来进行功率分配。由于最大化次用户效用函数的乘积问题是非凸的,通过变量替换将其转化为了一个等价的凸优化问题,利用该凸优化问题的对偶分解,提出了一种次用户间的频谱共享算法。仿真结果表明,所提算法在次用户和速率与公平性之间进行了有效折中。  相似文献   

9.
Spectrum sensing and access have been widely investigated in cognitive radio network for the secondary users to efficiently utilize and share the spectrum licensed by the primary user. We propose a cluster‐based adaptive multispectrum sensing and access strategy, in which the secondary users seeking to access the channel can select a set of channels to sense and access with adaptive sensing time. Specifically, the spectrum sensing and access problem is formulated into an optimization problem, which maximizes the utility of the secondary users and ensures sufficient protection of the primary users and the transmitting secondary users from unacceptable interference. Moreover, we explicitly calculate the expected number of channels that are detected to be idle, or being occupied by the primary users, or being occupied by the transmitting secondary users. Spectrum sharing with the primary and transmitting secondary users is accomplished by adapting the transmission power to keep the interference to an acceptable level. Simulation results demonstrate the effectiveness of our proposed sensing and access strategy as well as its advantage over conventional sensing and access methods in terms of improving the achieved throughput and keeping the sensing overhead low. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The two main constraints on the transmit power allocation of the secondary service in a spectrum sharing scheme are the received interference threshold at the primary receiver, and the maximum transmit power of the secondary user. We obtain a critical system parameter which relates these two constraints and enables the system designer to eliminate the interference threshold constraint by adjusting the maximum transmit power of the secondary users. Eliminating the interference threshold constraint significantly reduces the system complexity by making the power allocation of the secondary service independent from the channel state information between the secondary transmitter and the primary receiver; thus removes the need for signaling between primary and secondary systems.  相似文献   

11.
Dynamic Spectrum Access with QoS and Interference Temperature Constraints   总被引:5,自引:0,他引:5  
Spectrum is one of the most precious radio resources. With the increasing demand for wireless communication, efficiently using the spectrum resource has become an essential issue. With the Federal Communications Commission's (FCC) spectrum policy reform, secondary spectrum sharing has gained increasing interest. One of the policy reforms introduces the concept of an interference temperature - the total allowable interference in a spectral band. This means that secondary users can use different transmit powers as long as the sum of these power is less than the interference threshold. In this paper, we study two problems in secondary spectrum access with minimum signal to interference noise ratio (quality of service (QoS)) guarantee under an interference temperature constraint. First, when all the secondary links can be supported, a nonlinear optimization problem with the objective to maximize the total transmitting rate of the secondary users is formulated. The nonlinear optimization is solved efficiently using geometric programming techniques. The second problem we address is, when not all the secondary links can be supported with their QoS requirement, it is desirable to have the spectrum access opportunity proportional to the user priority if they belong to different priority classes. In this context, we formulate an operator problem which takes the priority issues into consideration. To solve this problem, first, we propose a centralized reduced complexity search algorithm to find the optimal solution. Then, in order to solve this problem distributively, we define a secondary spectrum sharing potential game. The Nash equilibria of this potential game are investigated. The efficiency of the Nash equilibria solutions are characterized. It is shown that distributed sequential play and an algorithm based on stochastic learning attain the equilibrium solutions. Finally, the performances are examined through simulations  相似文献   

12.
针对设备到设备(D2D)直连通信网络传统最优资源分配算法在随机信道时延、信道估计误差影响下鲁棒性弱的问题,该文在考虑参数不确定性影响的条件下,提出D2D用户总能效最大的鲁棒资源分配算法。考虑干扰功率门限、用户最小速率需求、最大传输功率和子信道分配约束,建立了下垫式频谱共享模式下多用户D2D网络资源分配模型。基于有界信道不确定性模型,利用最坏准则方法将原非凸鲁棒资源分配问题转换为确定性的凸优化问题。然后利用拉格朗日对偶理论求得资源分配的解析解。仿真结果表明所提出的算法具有很好的鲁棒性。  相似文献   

13.
Cognitive radio (CR) is an emerging wireless communications paradigm of sharing spectrum among licensed (or, primary) and unlicensed (or, CR) users. In CR networks, interference mitigation is crucial not only for primary user protection, but also for the quality of service of CR user themselves. In this paper, we consider the problem of interference mitigation via channel assignment and power allocation for CR users. A cross-layer optimization framework for minimizing both co-channel and adjacent channel interference is developed; the latter has been shown to have considerable impact in practical systems. Cooperative spectrum sensing, opportunistic spectrum access, channel assignment, and power allocation are considered in the problem formulation. We propose a reformulation–linearization technique (RLT) based centralized algorithm, as well as a distributed greedy algorithm that uses local information for near-optimal solutions. Both algorithms are evaluated with simulations and are shown quite effective for mitigating both types of interference and achieving high CR network capacity.  相似文献   

14.
为平衡网络负载与充分利用网络资源,针对超密集异构的多用户和多任务边缘计算网络,在用户时延约束下,该文构造了协作式计算任务卸载与无线资源管理的联合优化问题以最小化系统能耗。问题建模时,为应对基站超密集部署导致的严重干扰问题,该文采用了频带划分机制,并引入了非正交多址技术(NOMA)以提升上行频谱利用率。鉴于该目标优化问题具备非线性混合整数的形式,根据多样性引导变异的自适应遗传算法(AGADGM),设计出了协作式计算卸载与资源分配算法。仿真结果表明,在严格满足时延约束条件下,该算法能获取较其他算法更低的系统能耗。  相似文献   

15.
Power allocation is an important issue for spectrum sharing of unlicensed bands, in which multiple unlicensed systems may coexist and operate. Some recent works have been reported on spectrum sharing in frequency‐flat (FF) unlicensed bands. However, there has not been much work on power allocation for spectrum sharing in frequency‐selective (FS) unlicensed bands. For multiple cooperative systems cooperating on FS interference channels (ICs), we study an optimal power allocation strategy, which allows the transmission power density to vary within one subcarrier. By showing the duality of FS and parallel FF channels, we can therefore compute the achievable rate region of the proposed strategy when systems cooperate with each other. For non‐cooperative scenarios, we construct a game‐theoretical framework for multiple selfish systems on FS ICs. This framework enables us to utilize existing protocols designed for FF ICs to FS scenarios. By numerical results, in both cooperative and non‐cooperative scenarios, we show that the proposed strategy achieves a larger rate region than a conventional strategy, where the transmission power density on each subcarrier is set equal. Our work can be regarded as an extension of previous works for FF scenarios. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
博弈论框架下认知小蜂窝网络的动态资源分配算法   总被引:1,自引:0,他引:1       下载免费PDF全文
贾亚男  岳殿武 《电子学报》2015,43(10):1911-1917
为提高认知小蜂窝网络(CSCN)的系统容量,本文基于博弈论框架分析了上行链路中频谱、小蜂窝基站和功率的动态分配行为.传统的频谱分配方案只考虑了异质网路中相互独立频带间的最优分配,而没有考虑可重叠频段间的分配模式和上行链路资源的联合优化.基于此,本文提出了一种具有频带可交叉特性的联合分配模型.通过引入干扰温度限制、全新的干扰算子和记忆因子构造了一种新型的上行注水功率算法.仿真结果表明,基于博弈理论的动态选择特性和干扰温度的干扰避免准则,本算法可以有效提高CSCN的吞吐量和鲁棒性.  相似文献   

17.
In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique to improve the efficiency of radio spectrum. Unlike existing works in literatures where only one secondary user (SU) uses both overlay and underlay mode, the different transmission modes should dynamically be allocated to different SUs according to their different quality of services (QoS) to achieve the maximal efficiency of radio spectrum. However, dynamic sharing mode allocation for heterogeneous services is still a great challenge in CNRs. In this paper, we propose a new resource allocation method based on dynamic allocation hybrid sharing transmission mode of overlay and underlay (Dy-HySOU) to obtain extra spectrum resource for SUs without interfering with the primary users. We formulate the Dy-HySOU resource allocation problem as a mixed-integer programming to optimize the total system throughput with simultaneous heterogeneous QoS guarantee. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with simultaneous fairness guarantee, and the achieved Dy-HySOU diversity gain is satisfying.  相似文献   

18.
Extensive research in recent years has shown the benefits of cognitive radio technologies to improve the flexibility and efficiency of spectrum utilization. This new communication paradigm, however, requires a well-designed spectrum allocation mechanism. In this paper, we propose an auction framework for cognitive radio networks to allow unlicensed secondary users (SUs) to share the available spectrum of licensed primary users (PUs) fairly and efficiently, subject to the interference temperature constraint at each PU. To study the competition among SUs, we formulate a non-cooperative multiple-PU multiple-SU auction game and study the structure of the resulting equilibrium by solving a non-continuous two-dimensional optimization problem, including the existence, uniqueness of the equilibrium and the convergence to the equilibrium in the two auctions. A distributed algorithm is developed in which each SU updates its strategy based on local information to converge to the equilibrium. We also analyze the revenue allocation among PUs and propose an algorithm to set the prices under the guideline that the revenue of each PU should be proportional to its resource. We then extend the proposed auction framework to the more challenging scenario with free spectrum bands. We develop an algorithm based on the no-regret learning to reach a correlated equilibrium of the auction game. The proposed algorithm, which can be implemented distributedly based on local observation, is especially suited in decentralized adaptive learning environments as cognitive radio networks. Finally, through numerical experiments, we demonstrate the effectiveness of the proposed auction framework in achieving high efficiency and fairness in spectrum allocation.  相似文献   

19.
In this work, we proposed a new artificial bee colony–based spectrum handoff algorithm for wireless cognitive radio systems. In our wireless cognitive radio system, primary users, secondary users, and related base stations exist in the same communication environment. For our artificial bee colony–based algorithm, secondary users that always struggle to discover an idle channel have a leading role. While honey bees work hard to find the best‐quality nectar source for foraging, secondary users try to find idle channels for making communication. In this way, secondary users are organized for different missions such as sensing and handoff similar to honey bees to minimize spectrum handoff delay by working together. In the spectrum handoff stage, some secondary users must sense the spectrum so that the interrupted secondary user may perform the spectrum handoff process. In our developed spectrum handoff algorithm, the spectrum availability characteristic is observed on the basis of the missions of the bees in the artificial bee colony algorithm with the aim of minimizing the spectrum handoff delay and maximizing probability of finding an idle channel. With the help of the algorithm that is developed using the artificial bee colony, spectrum handoff delay of secondary users is considerably decreased for different number of users without reducing probability of finding an available channel.  相似文献   

20.
Cognitive radio is a new intelligent wireless communication technique for remedying the shortage of spectrum resource in recent years. Secondary users have to pay when they share available spectrum with primary users while price is an important factor in the spectrum allocation. Based on the game theory, an improved pricing function is proposed by considering the expectation of primary users. In this article, expectation represents the positivity of sharing spectrum with primary users. By introducing the positivity, price not only becomes different for different secondary users, but also can be adjusted according to the positivity. It is proved that the Nash Equilibrium of the new utility function exists. The simulation results show that spectrum sharing can not only be determined by the channel quality of secondary users, but also can be adapted according to the expectation of primary users. Besides, the proposed algorithm improves the fairness of sharing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号