首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李江涛  周平 《微电子学》2008,38(2):267-270
基于射频CMOS集成电路技术, 设计出用于无线通信系统的CMOS低噪声放大器.对影响其增益、噪声系数的阻抗匹配进行了分析.采用TSMC的0.35 μm射频工艺库,在ADS仿真平台上对低噪声放大器电路进行了仿真.其中,低噪声放大器设计成差分结构,提供了13 dB增益、-10 dBm IIP3、-13 dBm P1dB、1.9 dB的噪声系数和55 mW的功耗.  相似文献   

2.
段吉海  李晟  韩晓婷 《电子器件》2010,33(3):290-294
设计了一种适用于超宽带无线通信系统接收前端的全集成低噪声放大器.该放大器以经典窄带共源共栅低噪声放大器为基础,通过加入并联负反馈电阻以扩展带宽,采用噪声消除技术优化噪声系数.低噪声放大器基于SMIC 0.18-μmRF CMOS工艺进行设计与仿真,仿真结果表明,在3-5 GHz的频带范围内,S11小于-13 dB,S22小于-11.8 dB,S21大于17.3dB,S12小于-32 dB,增益平坦度小于0.7 dB,最大噪声系数为2.9 dB,输入三阶截断点为-12.9 dBm.采用1.8 V电源供电,电路总功耗约为20.5 mW.  相似文献   

3.
在具有非平衡变换功能的2.4GHz CMOS低噪声放大器的设计中,采用单端低噪声放大器与有源Balun结构通过耦合电容相级联的方法实现.单端低噪声放大器主要侧重优化它的噪声系数,并使其具有较高的增益.有源Balun结构则侧重于减小它的增益误差和相位误差.最后把单端低噪声放大器和有源Balun结构进行联合仿真.仿真结果显示:设计的低噪声放大器在中心频率上噪声系数为0.71dB,增益为25.767dB,输入输出反射系数均小于-20 dB,电路总功耗为13.86mW,并且实现了完全的非平衡转换.  相似文献   

4.
文章主要研究低噪声放大器在宽频带范围内增益平坦度低、阻抗匹配差的问题。选用Avago公司生产的具有高动态范围和低噪声特性的PHEMT器件ATF-38143晶体管,采用自给偏置共源,负反馈结构,基于ADS仿真设计完成一款两级级联的宽带低噪声放大器。该放大器利用源极串联反馈电感和输入端接双支节微带线的匹配方法。仿真结果显示放大器在1.0~3.0 GHz的频带范围内,输入输出回波损耗均小于-10 dB;系统稳定性因子K> 1;噪声系数为(1.6±0.4)dB;最大增益为26.5 dB,增益平坦度缩小到±0.5 dB。  相似文献   

5.
介绍了程控增益低噪声宽带直流放大器的设计原理及流程。采用低噪声增益可程控集成运算放大器AD603和高频三极管2N2219和2N2905等器件设计了程控增益低噪声宽带直流放大器,实现了输入电压有效值小于10mV,输出信号有效值最大可达10V,通频带为0~8MHz,增益可在0~50dB之间5dB的步进进行控制,最高增益达到53dB,且宽带内增益起伏远小于1dB的两级宽带直流低噪声放大器的设计。  相似文献   

6.
S波段低噪声放大器设计   总被引:1,自引:0,他引:1  
首先分析了低噪声放大电路的稳定性,功率增益及噪声系数的影响因素及改进方法;然后设计了一个中心频率为2.45 GHz,工作带宽为100MHz的S波段低噪声放大器.仿真结果表明,该放大器的噪声系数小于1 dB,功率增益大于28 dB,增益平坦度小于1 dB,输入/输出驻波比小于2:1.通过传统的电路板制作工艺实际制作了放大器电路,测试结果和仿真结果较一致.  相似文献   

7.
采用0.18μm CMOS工艺,针对DMB-T/H标准数字电视调谐器应用,设计了一个基于噪声抵消技术的宽带低噪声放大器.详细分析了噪声抵消技术的原理,给出了宽带低噪声放大器的设计过程.仿真结果表明,在48~862 MHz频率范围内输入输出反射系数均小于-20 dB,噪声系数低于3 dB,增益大于17 dB,1 dB压缩点为-6dBm.在1.8V电压下,电路功耗为10.8mW.  相似文献   

8.
本文设计了一种高增益低噪声混频器,提出了一种新的吉尔伯特混频器负载级电路.该混频器在3.3V工作电压下,基于Chartered 0.25 μ m标准CM0S工艺设计模型进行仿真验证,优化结果表明,该混频器的增益达到9.02dB,噪声系数为8.88dB,谐波失真降低为-17.29dB.  相似文献   

9.
张浩  李智群  王志功  章丽  李伟 《半导体学报》2010,31(5):055005-6
本文给出了应用于5GHz频段的可变增益低噪声放大器。详细分析了输入寄生电容对源极电感负反馈低噪声放大器的影响,给出了一种新的ESD和LNA联合设计的方法,另外,通过在第二级中加入一个简单的反馈回路实现了增益的可变。测试结果表明: 可变增益低噪声放大器增益变化范围达25dB (-3.3dB~21.7dB),最大增益时噪声系数为2.8dB,最小增益时三阶截点为1dBm,在1.8V电源电压下功耗为9.9mW。  相似文献   

10.
2.4 GHz、增益可控的CMOS低噪声放大器   总被引:3,自引:0,他引:3  
介绍了一种基于 0 35 μmCMOS工艺、2 4GHz增益可控的低噪声放大器。从噪声优化、阻抗匹配及增益的角度详细分析了电路的设计方法 ,讨论了寄生效应对低噪声放大器性能的影响。仿真结果表明在考虑了高频寄生参数的情况下 ,低噪声放大器依然具有良好的性能指标 :在 2 4GHz工作频率下 ,3dB带宽为 6 6 0MHz,噪声系数NF为 1 5 8dB ,增益S2 1为 14dB ,匹配参数S11约为 - 13 2dB。  相似文献   

11.
低噪声放大器是超宽带接收机系统中最重要的模块之一,设计了一种可应用于3.1~5.2GHz频段超宽带可变增益低噪声放大器。电路输入级采用共栅结构实现超宽带输入匹配,并引入电流舵结构实现了放大器的可变增益。仿真基于TSMC 0.18μm RF CMOS工艺。结果表明,在全频段电路的最大功率增益为10.5dB,增益平坦度小于0.5dB,噪声系数小于5dB,输入反射系数低于-15dB,在1.8V电源电压下,功耗为9mW。因此,该电路能够在低功耗超宽带射频接收机系统中应用。  相似文献   

12.
3~10 GHz SiGe HBTs超宽带低噪声放大器的设计   总被引:3,自引:2,他引:1  
根据UWB(Ultra-wideband)无线通信标准.提出了一款超宽带低噪声放大器并进行了设计.该放大器选用高性能的SiGe HBTs,同时采用并联和串联多重反馈的两级结构,以达到超宽频带、高增益、低噪声系数以及良好的输入输出匹配的目的.仿真结果表明,放大器在3-10 GHz带宽内,增益.S21高达21 dB,增益平坦度小于1.5 dB,噪声系数在2.4~3.3 dB之间.输入输出反射系数(S11和S22)均小于-9 dB,并且在整个频带内无条件稳定.所有结果表明该LNA性能良好.  相似文献   

13.
设计了一种低压、低功耗、输出阻抗匹配稳定的CMOS差分低噪声放大器.基于源极电感负反馈共源共栅结构,提出了基于MOS管中等反型区最小化Vdd·Id的方法,以优化功耗.在共栅晶体管处并联正反馈电容,以提升电路增益.对电路的噪声系数、输出阻抗稳定性、芯片面积等也进行了优化.仿真结果表明,当电源电压为1V,工作频率为5.8 GHz时,设计的低噪声放大器的噪声系数为1.53 dB,输入回波损耗为-22.4 dB,输出回波损耗为-24.6 dB,功率增益为19.2dB,直流功耗为4.6 mW.  相似文献   

14.
本文给出一种应用于无线传感器网络射频前端低噪声放大器的设计,采用SMIC0.18μmCMOS工艺模型。在CadenceSpectre仿真环境下的仿真结果表明:该低噪声放大器满足射频前端的系统要求,在2.45GHz的中心频率下增益可调,高增益时,噪声系数为2.9dB,输入P1dB压缩点为-19.8dBm,增益为20.5dB;中增益时,噪声系数为3.6dB,输入P1dB压缩点为-15.8dBm,增益为12.5dB;低增益时,噪声系数为6.0dB,输入P1dB压缩点为-16.4dB,增益为2.2dB。电路的输入输出匹配良好,在电源电压1.8V条件下,工作电流约为6mA。  相似文献   

15.
本文介绍一种符合中国超宽带应用标准的工作频率范围为4.2-4.8 GHz的CMOS可变增益低噪声放大器(LNA)。文章主要描述了LNA宽带输入匹配的设计方法和低噪声性能的实现方式,提出一种3位可编程增益控制电路实现可变增益控制。该设计采用0.13-μm RF CMOS工艺流片,带有ESD引脚的芯片总面积为0.9平方毫米。使用1.2 V直流供电,芯片共消耗18 mA电流。测试结果表明,LNA最小噪声系数为2.3 dB,S(1,1)小于-9 dB,S(2,2)小于-10 dB。最大和最小功率增益分别为28.5 dB和16 dB,共设有4档可变增益,每档幅度为4 dB。同时,输入1 dB压缩点是-10 dBm,输入三阶交调为-2 dBm。  相似文献   

16.
基于ADS和HFSS电磁仿真软件,设计了一种Ku波段低噪声放大器。放大器包含波导-微带转换单元和低噪声放大器两部分。波导-微带转换单元采用体积小,性能优良的微带探针型过渡,为提高转换性能和带宽,采用二阶λ/4阻抗变换结构来实现50Ω微带线与微带探针之间的阻抗匹配。低噪声放大器选用CDK公司生产的具有超低噪声和高增益的FET器件CKRF7512CK24晶体管,采用偏置电路、最小噪声匹配及最大输出增益匹配相结合的方案,实现了低噪声和高增益。实测结果表明,在11.5GHz~13.5GHz的频率范围内,该低噪声放大器的输入输出回波损耗均小于-10dB,噪声系数小于0.8dB。  相似文献   

17.
基于ADS的平衡式低噪声放大器设计   总被引:1,自引:0,他引:1  
平衡放大技术有着驻波特性好,增益高、易级联的优点。本文将平衡放大技术应用到低噪声放大器的设计中,在保证低噪声和功率增益的同时,用以提高低噪声放大器的驻波比和增益平坦度。ADS仿真结果表明,在5.3-6.3 GHz的频带范围内,低噪声放大器绝对稳定,噪声系数≤1.182 dB,功率增益达到10 dB,并且通过采用平衡放大技术,输入输出驻波比≤1.3∶1,带内波动≤1dB,提高了低噪声放大器的有效工作带宽。  相似文献   

18.
设计了一款适用于5.8G网络的高增益低噪声放大器,采用两级低噪声放大器级联的形式提高放大器的增益参数,进行了放大器输入端、输出端和级间阻抗匹配。采用ATF-551M4作为核心器件,使用ADS软件实现放大器直流偏置电路设计、稳定性设计及阻抗匹配电路设计,并且进行了两级低噪声放大器的联合仿真以及PCB版图设计。测试结果表明在5.725~5.825 GHz的工作频率范围内,低噪声放大器的噪声系数小于1.1 dB,增益大于20 dB,输入输出回波损耗小于-10 dB。  相似文献   

19.
王永利  王倩  黄亚森  梁锋  高建军   《电子器件》2008,31(2):596-599
采用0.35 μm siGe BiCMOS工艺实现了双极型晶体管和场效应管结合结构(BiFET结构)的宽带低噪声放大器.电路的输入端采用切比雪夫带通滤波器实现了宽频带范围的阻抗匹配.版图设计的仿真结果表明,在2~3 GHz的频带范围内,该低噪声放大器的噪声系数为2.2~2.7 dB,增益为20~22.7 dB,输入端反射系数为-17~-12 dB.  相似文献   

20.
设计出一种可应用于RFID系统,同时工作在915 MHz和2.45 GHz的双频段低噪声放大器.该设计以最大程度降低噪声为目标,采用并联LC网络替代传统单一高感值电感,并引入电流复用技术,最终实现高增益低功耗的双频段低噪声放大器的设计目标.仿真结果如下:在915MHz和2.45GHz的频率下,噪声系数均小于0.6dB;S(1,1)小于—15dB;S(2,2)小于—11dB;输入驻波比≤1.4;输出驻波比≤1.8;1dB压缩点约为—16.5dBm.仿真结果表明,在两个频段中的测试结果均优于预期指标的要求,为实际双频段低噪声放大器的设计及优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号