共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of rare earths on mechanical properties of plasma nitrocarburized surface layer of 17-4PH steel 总被引:1,自引:1,他引:0
The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ... 相似文献
2.
Microstructure and mechanical properties of surface layers of 30CrMnSiA steel plasma nitrocarburized with rare earth addition 总被引:1,自引:0,他引:1
The pulse plasma nitrocarburizing for 30CrMnSiA steel was conducted at 560 °C for 8 h in mixed gases of N2:3H2 and different flow rates of rare earths (RE) addition. Effects of rare earths (RE) addition in the carrier gas on the surface morphology, phase structure and mechanical properties of the nitrocarburized layer were characterized by optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness testing and wear testing, respectively. The results showed that the surface phase structures changed from dual phases ε-Fe2-3N(C) and γ’-Fe4N(C) to phase Fe3C and incipient nitrides, and the nitrocarburized surface hardness value decreased slightly from 756 to 681 HV0.1 with the RE addition increasing in the carrier gas, and the corresponding morphology of the nitrocarburized surface was granular nitride group (diameter 0.8-1.5 μm) and compact-fine Fe3C stick and patch (mean size 100-300 nm), respectively. The wear resistance of the experimental steel could be improved remarkably by plasma RE nitrocarburizing. The nitrocarburized layer with Fe3C phase formed in the mixed gases of N2:3H2 and flow rate of 0.5 L/min RE addition showed the lowest friction coefficient and the narrowest wear track.) 相似文献
3.
高碳马氏体不锈钢因其高硬度、优异的耐磨性以及适中的耐蚀性,被广泛应用于刀剪行业。主要通过金相,扫描电镜,硬度、冲击韧性、耐磨性能、耐蚀性能以及抗菌性能检测等方法,对新型刀具用高碳马氏体不锈钢6Cr16MoVRE进行微观组织表征与性能研究,并与5Cr15MoV和9Cr18MoV钢对比。研究发现,6Cr16MoVRE的碳化物尺寸细小且分布均匀。相比于另2种材料,6Cr16MoVRE具有高硬度与最佳冲击韧性,良好的耐磨性,优异的耐蚀性。此外,Ag的添加使6Cr16MoVRE具有极好的抗菌性。新型6Cr16MoVRE性能优异,为国内生产高档刀具提供了材料保障,有利于中国刀剪行业转型升级。 相似文献
4.
The application of rare earths(RE) in the Ni saving heat resistant steel was studied by metalloscopy,scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray difference(XRD).Because the diffusion of chromium was promoted by RE,a dense and adhesive Cr2O3 layer could form rapidly at the early oxidation stage,which played a effective protection role;the pinning effect of silicon dioxide was enhanced by RE in the internal oxidation layer,which had a block effect on the diffusion of metal ions and oxygen ions at later stage of oxidation and resulted in that the high temperature oxidation rate of RE heat resistant steel was decreased. 相似文献
5.
In order to improve the corrosion resistance and increase the service lifetime of P110 steel during operation,four chromizing coatings were formed onto its surface with/without addition of rare earths via pack cementation process.The surface morphologies and microstructures of the chromizing coatings were observed using scanning electron microscopy(SEM),and the phase constitutions were investigated by X-ray diffraction(XRD).Electrochemical corrosion behavior of the chromizing coatings in simulated oilfield ... 相似文献
6.
《Baosteel Technical Research》2010,(Z1):81
Martensitic stainless steel containing 12%-18%Cr have high hardness due to high carbon content. These steels are common utilized in quenching and tempering processes for knife and cutlery steel.The properties obtained in these materials are significantly influenced by matrix composition after heat treatment,especially as Cr and C content.Comprehensive considered the hardness and corrosion resistance,a new type martensitic stainless steel 6Cr15MoV has been developed.This study emphatic researches the effect of heat treatment processes on microstructure and mechanical properties of 6Cr15MoV martensitic stainless steel.Thermo-Calc software has been carried out to thermodynamic calculation;optical microscope(OM),scanning electronic microscope(SEM) and transmission electron microscope(TEM) have been carried out to microstructure observation;hardness and impact toughness test have been carried out to evaluate the mechanical properties.Results show that the equilibrium carbide in 6Cr15MoV steel is M23,C6 carbide,and finely distributed of M23C6 carbides can be observed on annealed microstructure of 6Cr15MoV stainless steel.6Cr15MoV martensitic stainless steel has a wider quenching temperature range,the hardness value of steel 6Cr15MoV can reach to 60.8 -61.6 HRC when quenched at 1060 - 1100℃.Finely distributed carbides will exist in quenched microstructure,and effectively inhabit the growth of austenite grain.With the increasing of quenching temperature,the volume fraction of undissolved carbides will decrease.The excellent comprehensive mechanical properties can be obtained by quenched at 1060-1100℃with tempered at 100-150℃,and it is mainly due to the high carbon martensite and fine grain size.At these temperature ranges,the hardness will retain about 59.2-61.6 HRC and the Charpy U-notch impact toughness will retain about 17.3-20 J.The morphology of impact fracture surface of tested steel is small dimples with a small amount of cleavage planes.The area of cleavage planes increases with the increasing of tempering temperature. 相似文献
7.
Plasma nitrocarburizing of nanocrystallized (NC) 3J33 steel were carried out at 400 and 430 ℃ for 4 h in a mixed gas of N2:3H2 and different flow rates of rare earths (RE) La and Ce reagents in this paper. Effects of temperature, rare earth addition and its addition amount on the microstructure and hardness of the nitrocarburized layer of NC 3J33 steel were also investigated. Surface phase composition of the nitrocarburized samples was analyzed by X-ray diffraction. Metallurgical structure, La and Ce concentration and microhardness profiles of cross-sectional nitrocarburized samples were studied using an optical microscope, a scanning electron microscope equipped with an energy dispersive X-ray analyzer and Vickers microhardness tester, respectively. The results showed that the surfaces of the nitrocarburized samples were mainly composed of γ’-Fe4N and α’-Fe (α-Fe dissolved with N and C) when the NC 3J33 steel was nitrocarburized at 400 ℃. As the temperature was enhanced up to 430 ℃, the surfaces consisted of γ’-Fe4N, α’-Fe and low nitrogen compound FeNx (x=0.0324-0.0989), and simple substance La was presented when RE flow rate was 0.1 L/min. The addition of La and Ce into nitrocarburized gas increased the thickness and hardness of the nitrocarburized layers. The samples nitrocarburized at 400 ℃ with RE flow rate of 0.025 L/min and 430 ℃ of 0.05 L/min possessed the thickest nitrocarburized layer, highest proportion of nitrides and hardness profile. RE elements could diffuse into the nitrocarburized layer and their concentration increased with temperature. The excess RE impeded the permeation of N, C elements and led to thinner compound layer as well as the diffusion layer. 相似文献
8.
The effects of Y on the microstructure and mechanical properties of ZL107 alloy were investigated using optical microscope, scanning electron microscope (SEM), Brinell hardometer, and MTS 810-22M tensile testing machine in this paper. The results showed that after Y was added to ZL107 alloy, the size of α-Al dendritie reduced, the acicular eutectic Si became short rod-shaped or granular, and the number and size of the blowholes obviously reduced. The mechanical properties of ZL107 alloy firstly increased and then decreased with Y content increasing. When Y content was 0.1 wt.%, the tensile strength and hardness of the alloy were maximum. 相似文献
9.
高碳铬不锈钢是应用最为广泛的不锈轴承钢,其具有较高的硬度和一定的耐蚀性,然而较高的碳、铬质量分数导致粗大碳化物的出现,轴承钢的疲劳和耐蚀性能将受到损害。相比之下,钢中添加氮元素能够减少粗大共晶碳化物的数量,同时析出大量细小的氮化物及碳氮化物,氮代碳既强化基体又改善耐蚀性,从而获得高强度与良好耐蚀性。介绍了含氮轴承钢及含氮马氏体轴承钢的发展历程,分析了不锈轴承钢中氮元素对组织结构、力学性能和耐蚀性能的作用机理;介绍国内外含氮轴承钢的研究现状并指出了含氮轴承钢研究的不足,需要在氮溶解模型、氮对组织演变及耐蚀机制等方面进行基础理论研究,同时不断研发不同系列的含氮马氏体轴承钢。 相似文献
10.
As-cast Cu-La alloys with La contents in the range of 0–0.32 wt.% were fabricated by vacuum melting method. The effects of La on microstructure and mechanical properties of as-cast pure copper were investigated using optical microscopy(OM), scanning electronic microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and tensile test. The results showed that La had obvious effects on the solidification microstructure and the grain refinement of as-cast pure copper. With the increase of La content, the ultimate tensile strength, the yield strength and the microhardness increased gradually, but the elongation increased first and then decreased while La content exceeded 0.089 wt.%. The improvement of mechanical properties was attributed to the effect of grain refinement strengthening, solid solution strengthening, second phase strengthening and purifying. However, excessive adding La would deteriorate the elongation owing to the excessive Cu6 La phases. 相似文献
11.
Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ... 相似文献
12.
The influence of rare earth chloride LaCl3 ·7H2O addition on the microstructural features, phase structure, corrosion resistance and microhardness of nickel-electroplating was investigated. The Watts-type with different additive amounts of LaCl3·7H2O(0-1.2g/L) were used in the experiment. Surface morphologies of coatings were examined by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) was used to measure the coatings’ grain size and the microstructure of coatings was detected by X-ray diffraction (XRD). Corrosive investigation was carried out in 3.5 wt.% NaCl solution. The microhardness values of the coatings with different amounts of LaCl 3·7H2O were measured, and the mechanism of the variation in microhardness was studied. Results showed that the addition of rare earth lanthanum refined the grain size and improved the surface consistency of the coatings, meanwhile the microhardness and corrosion property of coatings were improved and achieved a maximum with arround 1.0g/L LaCl 3·7H2O addition in electrolyte. The preferred growth orientation of lanthanum doped coating was crystal face (200), meanwhile the La2 Ni7 phase was detected in the nickel coating by XRD and this was due to the induced co-deposition of elements La and Ni. The reason maybe was that the special out-layer electronic structure of element La raised the polarization of Ni cathode deposition, accelerated the nucleation of Ni and reduced hydrogen evolution from cathode surface. 相似文献
13.
A series of rare earth bulks with the ultrafine nanocrystalline structure were prepared by applying an "oxygen-free" (an environmental oxygen concentration less than 0.5 ppm) in-situ synthesis system, where the inert-gas condensation was combined with the spark plasma sintering technology into an entirely closed system. The thermal and mechanical properties of the prepared ultrafine nanocrystalline bulks were characterized and compared with those of the raw polycrystalline bulks. It was found that the speci... 相似文献
14.
为了提高超级马氏体不锈钢的性能以满足油气开采的使用要求,在Cr13超级马氏体不锈钢中添加质量分数为0.065%的N元素,并采用金相观察、SEM、拉伸试验、电化学测试等方法,研究N元素对Cr13超级马氏体不锈钢组织、力学性能及耐蚀性能的影响。研究发现,N元素能细化原奥氏体晶粒、对组织中的回火马氏体有一定的"短化"作用,并且能有效减少组织中的δ铁素体、增加奥氏体的含量。在力学性能方面,适量的N元素因可以细化奥氏体晶粒和短化马氏体从而增加晶界和亚晶界,所以能有效提高试验钢的屈服强度和抗拉强度。耐蚀性能方面,电化学实验表明,适量的N元素能提高钝化膜的保护能力和再钝化能力,所以在一定程度上能有效提高试验钢的耐蚀性能。 相似文献
15.
The effect of rare earths on the morphology and microstructure of eutectic carbides in M2 high speed steel was studied. The results showed that rare earths promoted the formation of fishbone-like M6C eutectic carbides, compared to plate-like M2C carbides in ingots without modification. The formation of M6C was expected to be caused by rare earth inclusions which acted effectively as the substrate for nucleation of M6C carbides during solidification. M2C and M6C eutectic carbides exhibited different stability during heating. M2C eutectic carbides were much less stable than M6C carbides, and decomposed at high temperatures, favoring the spheroidization and refinement of carbides in high speed steels. 相似文献
16.
17.
Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel 总被引:1,自引:0,他引:1
YUE 《中国稀土学报(英文版)》2010,28(6):952-956
The types,morphologies and distributions of nonmetallic inclusions in Cu-P weathering steels with and without rare earth were analyzed through a quantitative image analyzer,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS)attached to SEM.Solid-soluble content of rare earth in the steels was analyzed by non-aqua electroanalysis and ICP.The results showed that rare earth modified the types and the morphologies of inclusions in the weathering steels.The small spherical rare earth oxysulfides and rare earth sulphides replaced the elongated MnS inclusions in the RE weathering steels.The rare earth inclusions dispersedly distributed and most inclusions were smaller than 2 μm in size.The optimum content of RE was 0.0065%-0.016% for 10PCuRE weathering steels containing about0.002% oxygen and 0.004% sulfur.Solid-soluble content of rare earth in steels was(14-20)x 10-6,which can act as a micro-alloying element.The corrosion resistance of 10PCuRE weathering steels and Q235 were studied by dry-wet cyclic immersion test.Their corrosion rates were obtained respectively.The polarization curves and pitting corrosion behaviors of weathering steels with and without rare earth were measured by electrochemical methods.The corrosion resistance of Cu-P weathering steels was improved by adding an appropriate amount of rare earth.Less and fewer rare earth inclusions largely decreased pitting susceptibility and rate of pit propagation.The pitting potential and the resistance against pitting corrosion of the RE weathering steel were significantly improved due to the modification of rare earth to inclusions. 相似文献
18.
This paper described the fluoride removal from water using a new adsorbent namely mixed rare earths modified chitosan (CR). Mixed rare earths mainly contained La followed by Ce which was analyzed by in... 相似文献
19.
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了不同变形条件下微量稀土对T91耐热钢动态再结晶行为的影响.分析绘制了稀土加入前后实验钢的真应力-真应变曲线、再结晶-温度-时间图、再结晶图及功率耗散图,并计算了高温下实验钢的再结晶激活能.在变形温度为850~1100℃,变形速率为0.004~10 s-1变形条件下,变形温度越高和变形速率越低,动态再结晶越容易发生.稀土加入会产生固溶强化,稀土元素与碳原子发生交互作用,且在晶界处或晶界附近偏聚,使变形抗力与峰值应变均增大,再结晶激活能由354.6 kJ·mol-1提高到397.2 kJ·mol-1.另外,稀土会显著推迟再结晶发生时间,扩大再结晶的时间间隔,推迟再结晶动力学过程. 相似文献
20.
电热水器用不锈钢材料主要有310S、840等,在使用过程结垢后,容易造成加热管的腐蚀失效。为了解决此问题,针对加热管的服役环境,在310S成分基础上,添加Mo元素,并优化调整了其他合金成分,开发了新型耐腐蚀加热管用不锈钢新材料。研究了新型加热管不锈钢热轧固溶酸洗态的微观组织、力学性能和耐腐蚀性能,并与310S做了对比。利用Thermo-Calc热力学软件分析了新材料在平衡条件下合金组织随温度的变化规律,在900 ℃左右开始析出σ相,但数量不多。在与310S相同轧制规程和热处理规程条件下,新型材料热轧固溶酸洗态的抗拉强度(Rm)、屈服强度(Rp0.2)、伸长率平均值分别为611 MPa、286 MPa、52.8%,强度整体略高于310S,但差别不大,伸长率略低于310S。新材料晶粒度为5.5级,部分区域7级,晶粒度略大于310S,整体上差别不大。新材料和310S平均点腐蚀速率分别为0.49 g/(m2·h)、1.37 g/(m2·h),可见新材料的耐点腐蚀性能明显优于310S。 相似文献