首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
混凝土面板堆石坝流变分析   总被引:21,自引:2,他引:21  
郭兴文  王德信  蔡新  董利川 《水利学报》1999,30(11):0042-0048
建议了一个堆石料流变模型,给出有限元求解方法。对水布垭面板堆石坝进行了考虑堆石流变性的应力应变分析。结果表明,堆石流变性对结构的性态会有比较大的影响,特别是对面板的应力状态影响很大。对于分期浇筑面板、分期蓄水的大型面板堆石坝,考虑施工期堆石的流变性是必要的。  相似文献   

2.
砂砾石面板堆石坝流变特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以乌鲁瓦提砂砾石面板堆石坝为例,分析砂砾石面板坝在考虑流变和不考虑流变情况下坝体在竣工期和蓄水期的位移和应力分布规律,总结流变效应对坝体应力和变形的影响。计算结果表明:计入流变影响后坝体竖向位移和水平位移较未计入流变效应结果都有所增大,大主应力和小主应力也有所增加;从坝体沉降历时曲线和流变附加节点荷载计算结果可以看出,砂砾石料的变形主要在施工期完成,在蓄水后一年流变变形基本结束坝体位移趋于稳定,且计入流变的计算结果与坝体实际检测结果相近。因此,在进行砂砾石面板堆石坝坝体应力变形计算时考虑砂砾石的流变效应是必要的。  相似文献   

3.
水布垭面板堆石坝是目前世界上在建的最高面板堆石坝,坝高233m,其上游坝坡采用挤压边墙施工技术。本文对挤压边墙在施工中的外部变形监测进行了认真分析,为面板的施工及同类型坝的施工提供了有益的借鉴。本文还对两种测量方法进行了比较,在满足精度要求的前提下对采用更简捷的测量方法进行了探讨。  相似文献   

4.
水布垭混凝土面板堆石坝为目前世界最高的面板堆石坝,最大坝高233m,采用挤压边墙固坡技术,面板分三期施工。本文介绍二期面板混凝土的施工技术、质量管理和安全管理措施。  相似文献   

5.
水布垭面板堆石坝面板混凝土施工   总被引:1,自引:0,他引:1  
水布垭面板堆石坝是目前世界上最高的面板堆石坝。经过室内试验和室外工艺试验,确定了面板混凝土施工配合比及浇筑流程。从混凝土原材料和浇筑时段选择,施工质量控制,加强面板保温、保湿、防风措施等方面,防止或减少了面板裂缝的产生。经现场试验室检测和完工后对面板表面的检查,面板混凝土质量均满足设计要求,裂缝数量很少。  相似文献   

6.
水布垭混凝土面板堆石坝安全性分析   总被引:1,自引:0,他引:1  
水布垭混凝土面板堆石坝,坝高233m。在尚无200m级以上面板坝设计先例的情况下,为了论证水布垭混凝土面板堆石坝的安全稳定,对影响大坝安全因素及设计方案进行了分析。  相似文献   

7.
水布垭混凝土面板堆石坝设计   总被引:1,自引:0,他引:1  
在水布垭混凝土面板堆石坝的设计中,针对筑坝材料的特性和堆石体的变形特征,进行了坝体结构及坝体材料分区的设计。对面板应力应变分析,采用E-B模型进行三维非线性有限元计算,计算成果表明:就坝体变形而言竣工期和蓄水期的水平位移与垂直沉降值,比照已建工程均在劲旅范围内;面板位移与应力分析的结果亦与已建工程的面板应务分布规律一致。  相似文献   

8.
介绍了水布垭面板堆石坝在坝体分区、坝料选择方面进行精细处理的经验.指出大坝变形控制的关键是确定合理的坝料参数和选择恰当的面板浇筑时机;提出浇筑面板时应保证面板顶部高程对应部位坝体大变形过程已经完成,该结论已在水布垭面板堆石坝建设中得到检验,相信对今后面板堆石坝的建设将起到有益的作用.  相似文献   

9.
为了分析堆石流变特性及其对公伯峡混凝土面板应力变形的影响,利用原位观测资料对公伯峡面板堆石坝的变形性态进行分析,采用Merchant黏弹性流变模型,反演计算得到相应的流变参数,并用反演得到的流变参数对大坝受力变形进行计算分析。结果表明:堆石的流变作用较明显,流变期间沉降计算值与实测值的变化规律较吻合,堆石流变对面板应力变形、垂直缝和周边缝变形有较大影响;所采用的流变模型和反演得到的流变参数较合理,能够预测面板坝轴向应力和裂缝的发展趋势。  相似文献   

10.
11.
高混凝土面板堆石坝流变机理及长期变形预测   总被引:1,自引:0,他引:1  
对于面板堆石坝,面板的变形主要取决于堆石体变形,如果堆石体变形过大,就会使面板产生裂缝,从而影响其防渗性能,甚至危及坝体的稳定。由于堆石体流变变形的复杂性,影响的因素很多,因此仅仅通过室内试验很难从本质上反映其流变机理和特性,除了试样尺寸与现场的巨大差异引起的缩尺效应误差之外,就是平行试验成果间也会出现差异。回顾了近年来关于堆石体流变机理方面的一些研究进展,介绍了揭示堆石体流变细观机理的两个流变模型,即基于组构理论的流变模型和基于随机散粒体不连续变形理论的流变模型。最后结合正在建设中的水布垭高面板堆石坝进行了流变分析,预测了大坝完建后的流变变形,计算结果表明,考虑流变效应的最大沉降为2.53m,此值基本处在设计的预测范围之内。  相似文献   

12.
堆石坝流变变形的反馈分析   总被引:51,自引:6,他引:51  
沈珠江  赵魁芝 《水利学报》1998,29(6):0001-0007
本文中建议了一个比较简单实用的3参数模型,并通过4座已建坝的反馈分析确定了从软岩到砂卵石4种不同质地堆石料的流变参数,今后新建类似堆石坝时可以参考此值进行设计计算。  相似文献   

13.
随着对面板堆石坝面板挤压问题认识的不断提高,目前常用的监测手段已无法满足面板挤压监测的要求。文章将面板压性缝的压缩变形分为了3个阶段,并提出了挤压监测的新手段,为以后高面板堆石坝压性缝监测设计提供了参考。  相似文献   

14.
介绍了面板堆石坝上游垫层坡面采用碾压水泥砂浆、喷洒乳化沥青、挤压混凝土等3种护面方式的施工工艺,并对3种护面方式从可靠性、对面板的约束、施工速度及其对垫层料填筑的影响和经济等方面进行了分析和比较.碾压砂浆护面的施工技术成熟,施工速度较快,砂浆的碾压可以利用垫层坡面碾压设备,投资较少,垫层护面效果较好.该方案实施以来,未出现大的技术问题.因此,碾压砂浆是上游坡面的重要保护措施之一,在我国面板坝施工中是使用较广泛的方案.可为面板堆石坝上游垫层坡面保护的设计和施工提供参考依据.  相似文献   

15.
水布垭面板堆石坝下游边坡稳定分析   总被引:1,自引:0,他引:1  
水布垭面板堆石坝是目前世界上在建同类坝中第一高坝(233m),地质勘探揭示,坝址河床砂卵砾石覆盖层含有砂砾粉土、粉质粘土透镜体。考虑到该工程的重要性及技术上的难度,也为了方便进一步优化设计,很有必要进行稳定计算,以验证砂卵砾石覆盖层对大坝尤其是下游坝坡的稳定影响,提出相应的工程处理措施,并对目前用于稳定分析的方法进行了讨论。  相似文献   

16.
以水布垭水电站混凝土面板堆石坝为例,对目前国内外混凝土面板坝的混凝土裂缝处理所选择的施工材料、方法和设备进行简单的综述,重点介绍了在利用开槽埋管法、打斜孔埋管法、粘贴灌浆嘴法进行化学灌浆后,在待处理表面粘贴SG305-C1液体橡胶或PSI-TAPE快速修补带,涂刷PSI-200水泥基渗透结晶型防水涂料,对建筑物混凝土缺陷进行的加固处理。处理后,经压水试验和蓄水运行表明,处理效果较好,满足工程需要,可供其他类似工程参考借鉴。  相似文献   

17.
面板堆石坝演化人工神经网络反演分析模型研究   总被引:1,自引:0,他引:1  
针对面板堆石坝参数反演的特点,结合实测资料,建立了演化人工神经网络参数反分析模型,提出了模型建立的具体方法和步骤;并对某面板堆石坝进行了有限元分析计算,得到了与实测资料较为吻合的计算结果。  相似文献   

18.
为了避免面板浇筑后堆石体的大量或不均匀变形,最新提出通过对堆石体填筑施工初期的监测资料进行整理和分析,对比邓肯模型、双屈服面弹塑性模型及清华非线性K—G模型在堆石坝应用的优缺点。结合施工初期的实测信息,确定在特定条件下最能反映堆石体真实情况的本构模型,利用BP神经网络结合遗传算法反演模型的最优参数,再正分析计算预测的堆石体施工期的沉降变形情况。将预测得到的沉降变形资料与堆石体填筑完成的实测沉降变形资料进行对比分析,以预测的堆石体沉降变形情况为参考数据,结合工程的实际要求,合理安排预留沉降期,进而确定合理的面板浇筑时机,避免堆石体较大的前期沉降变形对面板带来的不利影响,有效改善面板受力和变形情况。  相似文献   

19.
高混凝土面板坝面板应力分析现状   总被引:3,自引:0,他引:3  
结合水布垭混凝土面板坝应力变形计算,对当前混凝土面板应力分析的现状进行了阐述。指出了存在的问题与不足,即如何模拟大坝的施工与蓄水过程,如何反映堆石体及接缝的应力变形特征,如何考虑混凝土面板与垫层之间的相互作用,都会影响到面板应力的计算结果,对几何边界条件的处理,单元网格的划分也会对面板的计算应国产生一定的影响。指出:要使计算的面板应力与实际应力相符,必须在已有工作的基础上加大室内试验力度,对堆石林流变特性,面板与垫层的相互作用,接缝应力变形特性进行全面而深入的研究。  相似文献   

20.
三板溪面板堆石坝坝体变形控制   总被引:1,自引:0,他引:1  
对面板堆石坝而言,坝体变形控制是设计和施工的首要问题。三板溪水电站主、副坝均为面板堆石坝。主坝最大坝高185.5m,建于峡谷河段,筑坝材料为超硬岩及强风化料,岩性复杂,填筑工期短;副坝最大坝高92.1m,上下游均为贴坡坝型,坝基地形特殊,以上条件对控制坝体变形均不利。在设计中,从坝基开挖处理、坝料选配、坝体分区、填筑要求、施工程序和进度安排等方面均采取了措施,以减少这些不利影响,保证大坝安全运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号