首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究了SAPO-34分子筛上丁烯催化裂解为丙烯/乙烯的反应.结果表明,与ZSM-5分子筛相比,由于几何孔道的限制抑制了芳构化及氢转移副反应的进行,在SAPO-34分子筛上获得了突出的丙烯和乙烯的选择性,选择合适的反应条件可有效抑制芳烃及低碳烷烃的生成,从而提高目的产物丙烯和乙烯的的收率和选择性.  相似文献   

2.
目的 从石脑油资源中优选多产丙烯的裂解原料和工艺条件。方法 采用美国KBR公司的实验室蒸汽热裂解评价装置(BSPA),对6种不同产地石脑油的原料组成和不同工艺条件下裂解产物中丙烯收率进行比较分析。结果 中国石油乌鲁木齐石化公司(以下简称乌石化)石脑油的丙烯收率最高,为16.19%,对比原料组成,其异构烷烃的质量分数也最高,为52.58%;中国石油兰州石化公司(以下简称兰州石化)2#罐区石脑油在停留时间100 ms、水油质量比0.6、裂解温度860℃的条件下,丙烯收率为15.50%。结论 异构烷烃质量分数高的石脑油裂解可多产丙烯,且在不追求双烯(乙烯+丙烯)收率最大化的前提下,低裂解温度、高水油质量比有利于丙烯收率的提高。同时根据不同产地的石脑油的经济效益估算结果发现,多产丙烯的石脑油原料优选要结合双烯及三烯(双烯+1,3丁二烯)收率、能耗、烯烃市场价格及结焦等因素,以期获得最大的经济效益。  相似文献   

3.
分离石脑油馏分组成优化乙烯原料   总被引:2,自引:0,他引:2  
为了改进乙烯原料,提高乙烯收率,分别选取正构烷烃、异构烷烃、环烷烃和芳烃为裂解原料,考察模型化合物的蒸汽裂解产物分布,并分别采用分子筛吸附分离和溶剂萃取两种工艺,提出了可以适应三种目的烯烃产品不同比例需求的裂解制乙烯原料分子生产路线。在典型的裂解工艺条件下石脑油中的正构烷烃对裂解产物中乙烯的贡献最大,异构烷烃是产生丙烯的主要来源,而环烷烃主要生成丁二烯,芳烃很难裂解生成烯烃。通过吸附分离工艺富集石脑油中的正构烷烃,富含正构烷烃的脱附油蒸汽裂解制乙烯收率与不富集石脑油原料相比可提高13%。通过溶剂萃取将芳烃和环烷烃从石脑油中萃出,萃余油蒸汽裂解制乙烯和丙烯收率与未萃取石脑油原料相比分别提高3.0%和1.5%。分子筛吸附分离和溶剂萃取工艺相结合可以显著提高裂解烯烃收率。  相似文献   

4.
在XTL-5小型提升管催化裂化实验装置上,以苏丹达尔高酸原油为原料,进行催化裂解增产丙烯实验,考察了催化剂类型、反应温度、停留时间以及水油比对丙烯收率的影响。实验结果表明,采用多产丙烯LTB-2催化剂,不仅可以获得较高的丙烯收率和较低的低价值产物收率,同时可获得较高的柴油收率;提高反应温度、延长停留时间和提高水油比,均可提高丙烯的收率,其适宜的反应条件是反应温度520℃、停留时间1.6~2.0 s、水油比0.25。  相似文献   

5.
吉林常压渣油在提升管内催化裂解的反应规律   总被引:3,自引:0,他引:3  
在XTL-5小型提升管催化裂化实验装置上,以吉林常压渣油为原料,进行了催化裂解多产丙烯的实验,考察了反应温度、停留时间、催化剂类型对丙烯收率的影响。实验结果表明,提高反应温度、适宜的停留时间和采用多产丙LTB-2烯催化剂均可提高丙烯的收率,其中适宜的反应条件是反应温度530℃、停留时间1.4s左右。采用LTB-2催化剂,在第一段提升管反应温度530℃、m(LTB-2催化剂)∶m(常压渣油)(剂油比)为6.70、停留时间1.36s,第二段提升管反应温度530℃、剂油比7.21、停留时间1.8s左右的操作条件下,进行两段提升管催化裂解多产丙烯(TMP)工艺的模拟实验。模拟实验结果表明,TMP工艺可使丙烯收率达到22.67%,同时兼顾汽油、柴油的生产。  相似文献   

6.
SAPO-34分子筛上丁烯催化裂解制乙烯和丙烯   总被引:3,自引:1,他引:2  
以SAPO-34分子筛为催化剂,在固定流化床装置上研究了丁烯裂解的反应规律和结焦规律。实验结果表明,反应温度对丁烯裂解产物分布影响较大,丁烯转化率、乙烯和丙烯收率均随反应温度的升高而增加,乙烯和丙烯总选择性(双烯选择性)随反应温度的升高先增加后降低,适宜的反应温度为580~600℃;延长停留时间可提高丁烯转化率及乙烯和丙烯总收率(双烯收率),但停留时间过长会增加二次反应,降低乙烯、丙烯的选择性,尤其是丙烯;水蒸气对丁烯裂解有一定的促进作用,可使丙烯收率明显增加。与ZSM-5分子筛相比,SAPO-34分子筛的稳定性较差,但双烯选择性较高,在运行初期可获得与ZSM-5分子筛相当的双烯收率。SAPO-34分子筛催化丁烯裂解时,在运行初期及高温下生焦速率快,积碳显著影响SAPO-34分子筛的酸性。  相似文献   

7.
增产丙烯技术研究进展   总被引:5,自引:0,他引:5  
对由石油路线和非石油路线增产丙烯技术所涉及到的工艺过程进行了综述,指出近期丙烯生产仍将以石油路线为主,非石油路线为辅。从反应机理、热力学分析可知,采用择形分子筛催化剂在较低反应温度(400~600℃)下的烃类裂解制丙烯工艺可得到高的丙烯收率,是目前由石油路线增产丙烯的主要发展方向,特别是采用择形分子筛催化剂的多产丙烯流化催化裂化技术和低碳烯烃转化技术相耦合的工艺;而非石油路线中的甲醇/二甲醚转化制丙烯技术与低碳烯烃转化技术相耦合的工艺将是我国增产丙烯的另一重要途径。  相似文献   

8.
以高硅铝比ZSM-5分子筛为主要原料,经过成型和表面修饰过程制备催化剂,用于甲基叔丁基醚(MTBE)催化裂解反应。采用XRD、氮吸脱附和NH_3-TPD等表征方法研究了ZSM-5分子筛和催化剂的物理化学特征。实验结果表明,在催化剂的作用下,温度高于400℃时,MTBE直接裂解反应产物包括乙烯、丙烯、丁烯、C_1~C_4烷烃、C_5以上烃类和水。MTBE催化裂解反应中,丙烯和乙烯的产率随着反应温度的升高而增加。酸性中心是MTBE催化裂解反应的活性位,但是催化剂表面酸中心数量过多或酸性过强均可导致丙烯和乙烯收率降低。在500℃、0.05 MPa、质量空速16h~(-1)的条件下,MTBE可以完全转化,丙烯产率可达20.3%,乙烯产率可达5.3%。  相似文献   

9.
在40 L固定流化床反应装置上开展了不同复合轻烃原料在A型专属催化剂作用下的催化裂解制低碳烯烃反应评价试验,以考察工艺条件对原料转化率、乙烯及丙烯选择性和收率、丙烯/乙烯(摩尔比,下同)、以及副产物混合C4、氢气、甲烷收率的影响。结果表明:以双烯烃总收率为指标,轻烃原料族组成的催化裂解制低碳烯烃性能从高到低排序为:正构烷烃、异构烷烃、环烷烃、芳香烃;在轻烃原料R中添加异辛烷,虽然能显著提高催化裂解时的轻烃原料转化率及产物中的丙烯/乙烯,但产物中的乙烯及丙烯收率、双烯烃总收率均略有降低;含添加10%(质量分数)异辛烷的复合轻烃原料在A型专属催化剂作用下的催化裂解制低碳烯烃较佳反应条件为:液时空速为0.64 h-1,氮气、汽提水流量分别为0.50,1 L/min,反应温度为665℃及反应压力为40 kPa;在此条件下,复合轻烃原料的转化率为80.11%,目标产物中的双烯烃总收率、乙烯及丙烯收率分别为50.03%,43.50%,丙烯/乙烯为0.73。  相似文献   

10.
轻烃催化裂解具有裂解温度低、产物分布可调以及可多产丙烯等优点而备受关注。采用等量浸渍法制备了一系列不同金属改性的ZSM-5分子筛催化剂,在固定床微型反应器中评价了其催化正己烷裂解性能。实验结果表明,4种不同金属(Ni,Fe,Cr,Co)改性的ZSM-5分子筛催化剂上正己烷转化率都显示出下降趋势,但下降幅度不同,而且乙烯、丙烯选择性随不同金属的引入变化规律也不同。其中,Fe和Cr的引入对正己烷转化率的影响较小,而Co的引入导致正己烷转化率的下降幅度更大。就丙烯和乙烯选择性而言,随着金属的引入都有所增加。Co的添加对丙烯选择性提高幅度最大。因此,需要更高丙烯选择性时,可以牺牲正己烷转化率获得更多丙烯。  相似文献   

11.
ZRP沸石对FCC汽油催化裂解产丙烯的影响   总被引:3,自引:0,他引:3  
 本文研究了550℃,常压,加有水蒸气条件下,FCC汽油在ZRP沸石上的催化裂解反应,研究了ZRP硅铝比变化和稀土改性ZRP对反应的影响。通过实验结果分析和反应前后反应物与产物分布的计算研究表明,丙烯生产是通过FCC汽油中烯烃进行裂化反应实现的。提高烯烃的选择转化率、促进裂化反应和提高丙烯产品的选择性将有利于丙烯产量的增加。提高ZRP沸石硅铝比能够增加沸石的强酸量,提高烯烃的转化率,提高低碳烯烃的选择性,但丁烯选择性高于丙烯的选择性。稀土改性的ZRP沸石能够增加强酸量,提高烯烃的转化率,提高丙烯的产品选择性。  相似文献   

12.
介绍了催化裂化( FCC)工艺增产丙烯的主要思路,围绕这些思路综述了增产丙烯的工艺改造进展.包括深度催化裂化(DCC),催化热裂解技术(CPP),重质油接触裂解(HCC),PetroFCC,选择性组分裂化(SCC),Maxofin,高苛刻度FCC(HS-FCC),Superflex等工艺,并将这些工艺流程特点、使用的催化剂、产品分布和烯烃产品收率与常规FCC工艺相比较,结果表明,丙烯收率均有明显提高.并指出通过FCC工艺技术改造增产丙烯是适合当前我国国情的技术路线.  相似文献   

13.
The performance of a novel catalyst additive containing highly porous MCM-41 and ZSM-5 zeolite was investigated using a commercial equilibrium FCC catalyst in catalytic cracking of vacuum gas oil. The catalytic tests were assessed in a fixed-bed microactivity test unit at reaction temperatures 500–620 °C. The highest propylene yield of 23.8 wt% was achieved at 600 °C. The propylene yield increased from 14.49 wt% to 23.8 wt% when the temperature rose from 500 to 600 °C; however the gasoline yield fell from 22.47wt% to 16.49 wt% by increasing the temperature from 580 °C to 620 °C, respectively.  相似文献   

14.
分别考察了不同族组成的FCC汽油、FCC汽油窄馏分和几种模型化合物(1-己烯、3-甲基戊烷、正己烷和环己烷)催化裂化生成丙烯的性能。结果表明,高烯烃含量的FCC汽油催化裂化具有较高的转化率和丙烯产率。1-己烯、3-甲基戊烷、正己烷裂化环己烷生成丙烯的平均速率比1:2.0:2.5:32.5。在FCC汽油窄馏分催化裂化生成丙烯过程中,轻馏分裂化生成丙烯的贡献大于重馏分,因此回炼FCC汽油轻馏分制取丙烯是一种较好的选择。1-己烯的催化裂化反应中,主要发生裂化反应,占49%~69%,并且该比例随着反应温度的升高而增大;氢转移反应占15%~28%,并且随反应温度升高先增加后减小,在550℃时达到27.50%;聚合及环化反应分别占15%~28%,10%~15%。  相似文献   

15.
针对常规“水热超稳”工艺改性的USY分子筛性质和性能上的不足,将常规“二交二焙”的“水热超稳”工艺与原位硅改性方法结合,制备了表层富硅USY分子筛,并将其用于催化裂化(FCC)催化剂的制备;采用X射线衍射、N2吸附-脱附、NH3程序升温脱附、扫描电镜等表征手段对所制分子筛进行了表征,并通过ACE装置评价了所制FCC催化剂的性能。结果表明:表层富硅USY分子筛的结晶度、晶胞参数、比表面积、孔体积、表面酸性、微反活性等性质均明显优于常规USY分子筛;与由常规USY分子筛制备的FCC催化剂相比,重油在由表层富硅USY分子筛制备的FCC催化剂上裂化,其转化率提高3.70百分点,汽油收率和液体产物总收率分别提高了2.31百分点和1.32百分点,说明以表层富硅USY分子筛制备的FCC催化剂具有优良的催化性能。  相似文献   

16.
加工石蜡基油MIP工艺专用催化剂RMI的开发   总被引:5,自引:3,他引:2  
为最大限度地挖掘MIP新工艺的技术潜力,采用性能优化的Y型沸石组合、改性的基质组分以及烯烃芳构化性能良好的改性ZRP沸石材料,研制出与MIP工艺相匹配的RMI专用裂化催化剂,来强化MIP工艺两个反应区的催化裂化反应,并在MIP中型装置上进行了评价。评价结果表明,与MIP工业装置现用的常规裂化催化剂相比,加工石蜡基原料油时,新开发的RMI催化剂轻烃收率增加0.66个百分点,汽油烯烃质量分数降低3.29个百分点,同时汽油RON和MON基本保持不变。说明在MIP工况下,RMI催化剂较常规裂化催化剂更能发挥MIP新工艺的优点和特点。  相似文献   

17.
为了减少多产低碳烯烃的催化裂化过程中轻烃二次反应的氢气、甲烷和焦炭等副产物产率,以炼油厂轻烃和2-甲基-2-丁烯为原料,在小型固定流化床装置上考察了反应温度和催化剂床层密度对轻烃裂解反应性能的影响,探讨轻烃反应条件与副产物的关系;并以回炼油或常压渣油为积炭前体,将其与再生剂反应,形成一系列不同积炭覆盖程度的积炭催化剂,进一步考察轻烃在积炭催化剂上的裂解反应性能。结果表明:提高反应温度和催化剂床层密度都能使丙烯收率提高,但是提高反应温度会引起氢气和甲烷产率快速增长,而提高催化剂床层密度则会引起焦炭产率快速增长;轻烃在积炭催化剂上反应时氢气、甲烷和焦炭的总产率明显降低,而丙烯收率基本不变;积炭催化剂经多次循环使用后,仍可保持较好的轻烃裂解反应性能,具有良好的活性稳定性;以回炼油为前体的积炭催化剂的性能优于以常压渣油为前体的积炭催化剂。  相似文献   

18.
分别通过浸渍法和循环污染法对Y型分子筛和FCC催化剂进行镍、钒污染,考察了在干燥和水热条件下镍、钒对分子筛结晶度的影响,采用高级催化裂化评价装置(ACE)评价了镍、钒污染的FCC催化剂及稀土改性FCC催化剂的催化性能。结果表明,只有在水蒸气存在条件下,钒会破坏分子筛的晶体结构;在REY分子筛中,镍的存在对分子筛结构的破坏略有影响。在FCC催化剂中,镍、钒之间存在相互作用,与单独钒污染的催化剂相比,镍、钒同时污染的催化剂的比表面积和微反活性略有提高,反应转化率由72.14%增至78.02%,重油收率由10.49%下降至7.62%。与相应的镍、钒污染FCC催化剂相比,镍、钒污染的稀土改性FCC催化剂所得转化率与总液收均明显增加,重油收率下降,稀土元素的引入提高了催化剂的抗镍、抗钒性能,提高了催化剂的催化性能。  相似文献   

19.
以苏州高岭土为原料合成ZSM-5分子筛   总被引:1,自引:0,他引:1  
以苏州高岭土为原料,在水热体系中成功地合成了ZSM-5分子筛.采用XRD,SEM,FT-IR及N2吸附手段对合成的ZSM-5分子筛的结构及酸性分布进行了表征;以大庆VGO为原料,在重油微反装置上对合成的ZSM-5分子筛催化剂进行了催化性能评价.结果表明,这种ZSM-5分子筛与化学合成法得到的ZSM-5分子筛物化性质类似,具有良好的结晶度.这种合成的ZSM-5分子筛中强酸都是以B酸为主,L酸量较少,有利于催化裂化反应的进行;这种合成的ZSM-5分子筛催化剂作为普通催化裂化催化剂的添加剂,使丙烯收率由7.12%上升到9.78%,液化石油气收率由22.97%上升到29.88%,对丙烯具有较好的选择性,增产丙烯效果明显.  相似文献   

20.
为了解决石脑油中正戊烷难以高效催化裂解为低碳烯烃的问题,先采用Aspen Plus模拟软件对正戊烷的催化裂解反应进行热力学平衡分析,然后考察分子筛类型对正戊烷催化裂解的低碳烯烃收率和选择性的影响规律。对正戊烷的催化裂解反应进行热力学分析的结果表明,当反应温度高于650 ℃时,丙烯和乙烯的质量比m(C3H6)/m(C2H4)<1,且低碳烯烃(C2H4+C3H6+C4H8)的收率开始增速缓慢。因此,综合考虑m(C3H6)/m(C2H4)和低碳烯烃收率,选择在反应温度650 ℃下考察正戊烷在不同类型分子筛上的催化裂解反应性能。结果表明:在MTT分子筛上催化裂解的低碳烯烃选择性较高,在温度为650 ℃、压力为0.1MPa、MHSV为540 h-1的反应条件下,正戊烷在MTT分子筛上催化裂解的低碳烯烃(C2H4+C3H6+C4H8)选择性为55.21%。通过对催化裂解过程的裂解和氢转移反应的分析,表明小孔径的MTT分子筛能够抑制双分子反应,包括双分子裂解反应和双分子氢转移反应,从而提高低碳烯烃的选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号