首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本工作采用简易的低真空(10~(-1)—5×10~(-2)乇)高温(1400—1480℃)、短时间(几分钟)熔烧工艺,研究并发展了两类防护铌合金高温氧化的涂层。—类是用熔烧工艺在铌合金上形成硅化物——陶瓷复合涂层。另一类是在铌合金上熔烧40Ti—60Cr预合金底层然后再在1000—1150℃氩气中渗硅1—4小时形成铬钛硅复合涂层。这两类涂层均能在1300℃防护铌合金抗氧化200小时以上;1300℃(?)20℃抗热震300次以上;涂层试样经1300℃100小时抗氧化试验后,仍可弯曲至对叠(弯曲角180度)而基体铌合金不脆断,常温抗拉试验结果亦表明,涂层工艺对基体塑性无明显不良影响。本工作对涂层的组成和金相织构亦作了初步研究。  相似文献   

2.
MOSi2涂层的组织结构与高温抗氧化性能   总被引:5,自引:0,他引:5  
采用包渗法在Nb-10W合金基体上制备MoSi2涂层,测试了涂层试样的1 600℃静态抗氧化和室温至1 600℃循环抗氧化性能,分析了硅化过程中涂层的形成机理、涂层表面和截面的形貌以及氧化后涂层成分与结构变化。采用包渗法制备的硅化物涂层是通过反应扩散形成的,该涂层为复合结构:MoSi2相主体层;以NbSi2相为主、并含少量Nb5Si3相的两相过渡区;Nb5Si3相扩散层;该涂层结构表现出良好的高温抗氧化和抗热震性能;Si的扩散是通过空位的反应流动实现的,空位在主体层与两相过渡区界面处聚集成微孔带,氧化后微孔带宽度增加;致密的低硅化物扩散层能有效地阻止裂纹向基体扩展。  相似文献   

3.
一、前言1976年,我们研制的硅化物涂层Si-15Cr-10Ti-10Zr(简称Si-15Cr)涂层,与同类涂层比较,具有熔烧温度低、抗氧化、抗热震性能好、加涂工艺简单、涂层表面光洁、可局部修补等优点。经实验室检验和多次试车考核,认为是一个有实用价值的铌合金高温抗氧化涂层,但涂层的熔烧温度和保温时间对涂层及基材的主要性能均有不同程度的影响。本文试图通过对Si-15Cr/C-103 涂层的金相观察、“电子探针”分析、“X光衍射”结构分析的结  相似文献   

4.
为提高Ni基合金的高温抗氧化能力,采用陶瓷粘结相与Cr2O3制成料浆,在1300℃熔烧制备一层高温抗氧化陶瓷涂层.结果表明,该陶瓷涂层结构致密,与基体结合牢固,抗热震性能良好.涂层试样在1100℃空气中连续100h抗高温氧化实验表明:陶瓷涂层展现出良好的抗高温氧化能力.  相似文献   

5.
本文以SiC、Si和酚醛树脂为主要原料,通过浸涂和气相渗硅两步法在石墨表面制备了SiC抗氧化涂层。利用XRD、SEM研究了涂层的相组成与形貌。结果表明,气相渗硅后涂层的主相为α-SiC,β-SiC和Si,其中Si是气相渗硅过程中残留的。涂层与基体之间具有过渡结构,致密度良好。抗氧化和抗热震实验表明:由气相渗硅工艺制备的SiC涂层结构致密,具有良好的抗氧化性能,1200℃空气条件下氧化16 h后试样每小时增重量约为2.18 mg/cm2。涂层具有良好的抗热震性能,经1000 ℃—室温循环热震15次后试样质量变化百分率仅为-0.17%。  相似文献   

6.
为了提高Nb-Hf合金的高温热震性能,采用浆料烧结和高温渗透法制备了Si-Ti-Cr硅化物涂层,对比分析了Si-Ti-Cr硅化物包覆的Nb-Hf合金样品在大气和真空条件下的高温热震性能。通过模拟在热冲击过程中涂层的温度场和热应力场分布,揭示了Si-Ti-Cr涂层在大气和真空条件下的热冲击失效机理。结果表明,在1300 ℃热震循环100次条件下,涂层的真空失重小于0.8 mg/cm2;在1600 ℃热震循环200次条件下,涂层的空气增重小于3 mg/cm2。硅化物涂层在1300 ℃真空环境下和1600 ℃空气环境下具有优异的抗热震性能。  相似文献   

7.
铌及铌合金高温抗氧化防护涂层研究   总被引:1,自引:0,他引:1  
针对铌及铌合金高温下抗氧化性能差的现象,进行了高温抗氧化防护涂层的设计。采用料浆熔烧法在C-103铌合金表面制备改性的Si—Mo涂层,并对改性的Si-Mo涂层的形貌、结构、成分及1700℃的抗氧化性能进行了分析。结果表明,涂层与基体之间通过扩散形成过渡层,达到了冶金结合,涂层的复合结构有利于提高抗氧化性能。在氧化环境下,涂层表面生成一层玻璃层,阻止氧的进一步扩散。试样在1700℃下氧化3~4h后,涂层元素与基体发生互扩散,在界面处形成大量集中孔洞,使涂层从其主体与过渡层接触的界面处发生断裂,导致涂层失效。  相似文献   

8.
C/C复合材料SiC-TaSi2/MoSi2抗氧化复合涂层研究   总被引:5,自引:0,他引:5  
采用包埋技术在C/C复合材料表面制备SiC-TaSi2/MoSi2抗氧化复合涂层,通过恒温氧化实验以及X射线衍射(XRD)分析、扫描电镜(SEM)观察及能谱(EDS)分析,研究了包埋粉料中Ta,Mo含量对复合涂层微观结构和高温抗氧化性能的影响.结果表明,Ta,Mo摩尔比为1:1时所制备的复合涂层具有相对较大的厚度和较为致密的结构,氧化过程中在该涂层表面形成致密和稳定的玻璃态SiO2保护膜.在1500℃氧化326 h和经过23次1500℃至室温间的急冷急热后,带有该涂层的C/C试样失重仅为0.97%,表明该涂层具有优异的抗氧化和抗热震性能.  相似文献   

9.
为了改善K403镍基高温合金的高温抗氧化性能,采用大气等离子喷涂在镍基合金表面制备了4种不同结构的MoSi2复合涂层。结果表明:4种结构涂层中K403/NiCoCrAlY/ZrO2/30%(体积分数)ZrO2-MoSi2/MoSi2复合涂层的抗热震性能最好,且该涂层的界面结合强度最高(22.5 MPa)。MoSi2涂层的自身结合强度大于涂层界面结合强度,结合机理以机械咬合式为主。该复合涂层在1 200℃氧化120 h后的质量增加仅为3.42 mg/cm2,提高K403合金和传统氧化锆涂层的抗氧化性能。MoSi2复合涂层表面在高温时生成了一层致密的SiO2保护膜,阻碍了氧的扩散,减轻了过渡层NiCoCrAlY/ZrO2界面处的氧化。  相似文献   

10.
采用包埋技术在C/C复合材料表面制备SiC/TaSi2抗氧化复合涂层,通过恒温氧化实验以及X射线衍射分析、扫描电镜观察,研究了包埋粉料中硅钽含量对复合涂层微观结构和高温抗氧化性能的影响.结果表明,随着硅钽比的减小,复合涂层的厚度先增大后减小;硅钽比为5:1所制备的复合涂层具有相对较大的厚度和较为致密的结构,且TaSi2含量相对较高,体现出优良的抗氧化和抗热震性能,在1500℃氧化241.8 h和经过18次1500℃←室温急冷急热后,带有该涂层的C/C试样失重仅为1.04%.穿透性裂纹的形成是长时间氧化后涂层失效的主要原因.  相似文献   

11.
采用真空电弧镀技术(ARC)在镍基高温合金DD3上制备了包覆型涂层HY3,通过化学方法完全退除基体上的涂层,用燃气热腐蚀试验、循环抗氧化试验来评价涂层的抗高温氧化、抗热腐蚀性能,并且通过高温持久、室温瞬时拉伸、高周疲劳等力学实验来评价涂层退除再涂覆后对基体合金的力学性能的影响,用SEM观察涂层退除前后表面形貌.结果表明,涂层经过去除再涂覆后,微观组织形貌基本不变;循环氧化寿命是原始涂层的97.9%,与原始涂层的抗热腐蚀性能相当,对合金的力学性能不造成显著影响.  相似文献   

12.
等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能   总被引:2,自引:0,他引:2  
采用等离子喷涂制备了La2(Zr0.7Ce0.3)2O7(LZ7C3)热障涂层,并对涂层的微观组织、相结构、成分、相稳定性、涂层热导率以及抗热震性能进行了研究.结果表明,LZ7C3涂层由单相烧绿石结构物质组成,高温稳定性较好;涂层的热导率较块材下降约20%,这是由于涂层具有较高的孔隙率所致:涂层在不同温度范围的热震寿命和失效机制不同,在室温至约1000℃间的热震寿命为116 cyc,涂层失效方式以片状剥落为主:在室温至1100℃间的热震寿命为53 cyc,涂层失效方式为片状剥落和层状撕裂;在室温至1200℃间的热震寿命为3 cyc,涂层失效方式以层状撕裂为主.  相似文献   

13.
以K444镍基高温合金为基体,采用多弧离子镀法制备了NiCrAlY涂层、喷涂-烧结法制备了搪瓷基复合涂层,并对比研究了2种涂层的抗热震性能。热震实验高温段温度为900℃。高温段保温1.5h后经水或空气冷却为一个热震循环。结果表明,NiCrAlY涂层的抗热震性能较差。当冷却介质为水时,水淬热震30cyc后,涂层表面氧化膜开裂明显,且有个别裂纹已穿透氧化膜,扩展至涂层内部;而搪瓷基复合涂层的抗热震性能非常优异。热震后,涂层表面及内部均未发现裂纹,涂层和基体界面结合良好。经分析,其优良的抗热震性能源于:(1)搪瓷釉热膨胀系数与高温合金基体匹配度高;(2)纳米Ni和NiCrAlY金属颗粒的加入进一步增大涂层热膨胀系数的同时,还提高了搪瓷的韧塑性。  相似文献   

14.
采用两步法热扩散技术在K417G合金上制备了NiCrAlY涂层,涂层试样的拉伸试验分别在室温与900℃进行,旋转弯曲疲劳试验在室温下进行。研究了涂层对合金拉伸强度、疲劳寿命的影响及疲劳断裂机理。结果表明:室温和900℃条件下,施加涂层提高了合金的屈服强度,降低了合金的抗拉强度;室温下的涂层试样的疲劳极限强度比合金降低了50MPa,相同应力条件下涂层降低了合金的疲劳寿命;涂层NiAl相的本征脆性和涂层内部缺陷降低了基体合金的拉伸性能,并引发了疲劳裂纹的萌生与扩展。  相似文献   

15.
采用化学气相反应及料浆刷涂烧结复合工艺在石墨表面制备高温抗氧化莫来石/SiC复合涂层。XRD物相分析结果显示涂层外层由莫来石及微量SiO2相组成,涂层内层主要由β-SiC相组成。通过高温抗氧化试验研究涂层的高温抗氧化行为并测试涂层氧化后的洛氏硬度。结果表明:所制备的莫来石/SiC复合涂层具有良好的高温抗氧化及热震性能,经过1150℃、109h的高温氧化及12次1150℃→室温的循环热震试验后,涂层试样的质量增加率为0.085%。硬度测试结果表明:所制备的莫来石/SiC复合涂层各层之间具有良好的结合性能。  相似文献   

16.
为了提高Nb-Hf合金的高温抗氧化性能,采用浆料烧结和高温渗透制备了Si-Ti-Cr硅化物涂层。分析了Si-Ti-Cr硅化物包覆的Nb-Hf合金样品在恒温氧化和高温热震条件下的抗氧化性能,揭示了Si-Ti-Cr涂层高温恒温氧化和高温热震条件下的失效机理。结果表明,在1800℃恒温氧化5 h条件下,涂层的增重为7 mg/cm2;在1700℃热震循环50周次和恒温氧化5 h条件下,涂层的最大增重为1.8mg/cm2。硅化物涂层在1800℃恒温氧化环境下和1700℃热震/恒温氧化环境下具有优异的抗氧化性能。  相似文献   

17.
为提高钛合金的高温抗氧化性能,采用微弧氧化法和有机硅转化法在TA15合金表面制备出微弧氧化/有机硅转化复合涂层。采用XRD、SEM、EDS等方法分析涂层的组织结构,并评价涂层在700℃时的高温氧化行为。结果表明:微弧氧化涂层主要由锐钛矿相和金红石相Ti O2组成,涂层表面存在直径约5μm的微孔,但涂层内层致密。微弧氧化涂层表面的有机硅转化层主要由Ce O2、Si C、Al和Al_2O_3相组成,厚度约为20μm;微弧氧化涂层与有机硅转化涂层之间无明显界线,界面结合良好。在700℃长时间高温氧化20 h后,TA15合金的氧化增重为0.5875 mg/cm2,微弧氧化涂层的增重为0.2513 mg/cm2,而复合涂层显著改善抗氧化性能,增重仅为0.0506 mg/cm2。700℃至室温热冲击50循环后,复合涂层没有发现剥落,显示出良好的抗热震性能。  相似文献   

18.
以SiC、Si和酚醛树脂为主要原料,通过浸涂和气相渗硅两步法在石墨表面制备了SiC抗氧化涂层。利用XRD、SEM研究了涂层的相组成与形貌。结果表明,气相渗硅后涂层的主相为α-SiC、β-SiC和Si,其中Si是气相渗硅过程中残留的。涂层与基体之间具有过渡结构,致密度良好。抗氧化和抗热震实验表明:由气相渗硅工艺制备的SiC涂层结构致密,具有良好的抗氧化性能,1200℃空气条件下氧化16 h后试样每小时增重量约为2.18 mg/cm~2。涂层具有良好的抗热震性能,经1000~25℃循环热震15次后试样质量变化率仅为–0.17%。  相似文献   

19.
两种WC基涂层在600 ℃下的摩擦学性能   总被引:1,自引:0,他引:1  
采用超音速火焰喷涂技术制备了WC-(W,Cr)2C-Ni和WC-17Co两种涂层,评价了两种涂层在高低温快速交变条件下的热震性能,并使用SRV摩擦磨损试验机考察了两种涂层从室温到600℃时与Si3N4球配副时的摩擦磨损性能.结果表明:WC-(W,Cr)2C-Ni涂层的抗热震性能远优于WC-17Co涂层;WC-17Co涂层虽具有较低的磨损率,但是高温下涂层中产生大量裂纹及发生因严重氧化而导致的硬度下降,表明该涂层不适于作为400℃以上的耐磨材料;尽管WC-(W,Cr)2C-Ni涂层的磨损率比WC-17Co涂层大,但仍属于微量磨损,且其具有优异的抗高温氧化性能和抗热震性能,所以该涂层非常适于作为高温或宽温域下的耐磨材料.  相似文献   

20.
粘结层和陶瓷层厚度对纳米结构热障涂层性能的影响   总被引:2,自引:1,他引:1  
何箐  李嘉  詹华  汪瑞军  王伟平 《表面技术》2013,42(1):17-20,41
采用超音速火焰喷涂+大气等离子喷涂工艺,在K403高温合金表面制备不同层厚比的NiCrA-lY/纳米7YSZ热障涂层,研究了涂层厚度变化对热障涂层表面粗糙度、结合强度、热震性能和热循环寿命的影响规律。结果表明:当粘结层厚度一定时,随着陶瓷层厚度的增加,其表面粗糙度增加,涂层结合强度下降;当粘结层厚度为50μm时,热障涂层的抗热震性能随陶瓷层厚度增加而降低,粘结层厚度提高至100μm时,热障涂层的抗热震性能随陶瓷层厚度增加先提高,后降低,热障涂层在1100℃的热循环寿命测试结果也基本对应这一规律;当粘结层厚50μm且陶瓷层/粘结层的层厚比在(1~2)∶1的范围内,或者粘结层厚100μm且陶瓷层/粘结层的层厚比在(2~2.5)∶1范围内时,热障涂层具有较优异的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号