共查询到20条相似文献,搜索用时 10 毫秒
1.
Salp Swarm Algorithm (SSA) is a novel swarm intelligent algorithm with good performance. However, like other swarm-based algorithms, it has insufficiencies of low convergence precision and slow convergence speed when dealing with high-dimensional complex optimisation problems. In response to this concerning issue, in this paper, we propose an improved SSA named as WASSA. First of all, dynamic weight factor is added to the update formula of population position, aiming to balance global exploration and local exploitation. In addition, in order to avoid premature convergence and evolution stagnation, an adaptive mutation strategy is introduced during the evolution process. Disturbance to the global extremum promotes the population to jump out of local extremum and continue to search for an optimal solution. The experiments conducted on a set of 28 benchmark functions show that the improved algorithm presented in this paper displays obvious superiority in convergence performance, robustness as well as the ability to escape local optimum when compared with SSA. 相似文献
2.
针对蝴蝶优化算法(BOA)容易陷入局部最优和收敛性差等问题,提出一种多策略改进的蝴蝶优化算法(MSBOA).首先引入余弦相似度位置调整策略,通过旋转变化算子和伸缩变换算子进行位置更新,从而有效地保持BOA的种群多样性;其次引入动态切换概率,来平衡BOA局部阶段和全局阶段的转换;最后增加混合惯性权重策略,以提高BOA的收... 相似文献
3.
陈寿文 《计算机工程与应用》2015,51(5):58-64
针对标准粒子群优化算法易出现早熟收敛及寻优精度低等缺陷,提出一种基于双质心和自适应指数惯性权重的改进粒子群算法(DCAEPSO)。算法使用粒子搜到的最优解和当前解构造加权的种群质心和最优个体质心,结合使用自适应指数惯性权重调整了速度更新公式。通过几个典型测试函数仿真及Friedman和Holm检验,实验结果显示DCAEPSO比其他粒子群算法寻优能力强。 相似文献
4.
分析了现有蚁群聚类算法的特点与不足,并在此基础上提出了一种改进的蚁群聚类算法。改进算法分别从蚂蚁捡起对象、放下对象的策略、参数α的自适应改变策略及游离对象的处理策略四个不同方面对现有蚁群聚类算法进行改进。仿真实验结果表明,改进算法可以获得更好的聚类效果和时间性能。 相似文献
5.
针对粒子群优化算法因种群多样性丧失而陷入局部最优、早熟收敛的问题,提出一种基于指数衰减惯性权重的分裂粒子群优化算法(EDW-DPSO)。首先,采用半均匀初始化种群,使种群以整体均匀、局部随机的方式分布;其次,引入动态分裂算子,对满足分裂条件的粒子执行分裂操作,增加种群多样性,避免粒子陷入局部最优;最后,采用指数衰减的惯性权重,平衡粒子全局搜索和局部开发能力。实验结果表明,该算法在前期有较大的搜索空间,种群多样性增加,后期则强调局部开发,提高收敛精度和优化能力,加快粒子跳脱局部极值逼近全局最优。 相似文献
6.
樽海鞘群算法是一种新型的群智能优化算法.与其他智能优化算法相比,樽海鞘群算法的优化求解策略仍有待改进,以进一步提高该算法的求解精度和寻优效率.本文提出一种基于衰减因子和动态学习的改进樽海鞘群算法,通过在领导者更新阶段添加衰减因子,提高算法的局部开发能力,在跟随者更新阶段引入动态学习策略,提高算法的全局搜索能力.本文对16个测试函数进行实验,将提出的改进算法与其他智能优化算法比较,实验结果表明,本文提出的改进算法在收敛精度和收敛速度方面有较大提升,具有良好的优化性能. 相似文献
7.
《International journal of systems science》2012,43(7):1268-1283
Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs. 相似文献
8.
Le Anh Duc Tien Trong Nguyen Vu Minh Yen Tung Khac Truong 《International journal of systems science》2018,49(5):1088-1102
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms. 相似文献
9.
在对人工鱼群算法的寻优机理进行深入的分析研究的基础上,提出了四种自适应人工鱼群算法,通过赋予人工鱼更多的智能,使每条人工鱼都能根据鱼群的状态自动地选择并适时调整自身的视野和步长,从而简化了参数设定,提高了收敛速度和寻优精度。实验结果表明,改进后的人工鱼群算法,在寻优精度、收敛速度及克服局部极值的能力方面均有提高。 相似文献
10.
针对樽海鞘群算法寻优精度低、收敛速度慢和易陷入局部最优等缺点,提出一种基于自适应t分布与动态权重的樽海鞘群算法。首先,在领导者位置更新中引入蝴蝶优化算法中的全局搜索阶段公式,以此来增强全局探索能力;然后,在追随者位置更新中引入自适应动态权重因子来加强精英个体的引导作用,从而增强局部开发能力;最后,为了避免算法陷入局部最优,引入自适应t分布变异策略对最优个体进行变异。通过对12个基准测试函数进行求解,根据平均值、标准差、求解成功率、Wilcoxon检验和收敛曲线分析,表明所提出的算法要优于标准樽海鞘群算法,以及参与比较的其他改进樽海鞘群算法和其他群智能算法,说明了其在寻优精度和收敛速度方面都有显著提升,并且具备跳出局部最优的能力。通过将其应用在脱硝入口浓度最低点寻找上,验证了算法的有效性。 相似文献
11.
针对SFLA算法运行速度较慢、在优化部分函数问题时精度不高和易陷入局部最优的缺点,提出了一种单种群混合蛙跳算法SPSFLA。该算法采用单个种群,无需对整个种群进行排序,每个个体通过向群体最优个体和群体中心位置学习进行更新。如果当前个体学习没有进步,则对群体最优个体进行变异,并用变异的结果替代当前个体,加快了算法的运行速度和收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。 相似文献
12.
A thruster reconfiguration control approach of manned submarine with 7000?m operation depth based on quantum-behaved particle swarm optimisation (QPSO) is presented in this article. The manned submarine has eight thrusters. When thruster faults happen, the corresponding weight matrix is updated to restrict the usage of the faulty thruster. But the solution with this method may become unfeasible (exceed the rated valve of the thruster) and cannot be directly applied to the thrusters. In order to complete an appropriate control law reconfiguration, a novel control reallocation method based on QPSO is proposed. Not only is the solution obtained by the approach of QPSO limited in the whole feasible space, but also the control error of the fault-tolerant control is very small. Eight dimensions of the particles are used in this article, and each particle represents the components of the control vector, it searches in the range of the restricted factor value to make sure that all the reconfiguration control solutions are feasible. Compared to the weighted pseudo-inverse method, the error of the obtained control vector with the QPSO is very small. Finally, simulation examples of multi-uncertain faults are given to illustrate the advantages of the proposed method. 相似文献
13.
为解决粒子群算法前期搜索“盲目”,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群算法。该算法在种群中引入4种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率;为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性。对4个标准测试函数进行仿真,实验结果表明IPSO算法在收敛速度、收敛精度以及成功率上都明显优于LDWPSO和WPSO算法。 相似文献
14.
分析了粒子群算法的收敛性,指出早熟是由于粒子速度降低而失去继续搜索可行解的能力.进而提出一种基于种群速度动态改变惯性权重的粒子群算法,该算法以种群粒子平均速度为信息动态改变惯性权重,避免了粒子速度过早接近0.通过5个标准测试函数的仿真实验并与其他算法相比,结果表明该算法在进化中期能很好地保持种群多样性,有效地改善算法的平均最优值和成功率. 相似文献
15.
提出了种群进化速度和种群聚合度两个概念,并讨论了在全局收敛过程中惯性权重与两者之间的关系;考虑Sigmoid函数在线性与非线性之间呈现的平滑过渡性,从种群进化速度和种群聚合度两方面出发,提出了基于Sigmoid函数的惯性权重自适应调整方法。通过三个典型的多峰函数,将提出的算法(AS-PSO)与标准粒子群优化算法(SPSO)和基于Sigmoid函数的粒子群优化算法(S-PSO)进行了仿真分析比较,结果表明,AS-PSO算法相比其他两种算法,全局寻优能力更强,在一定程度上解决了收敛性能与全局寻优能力之间的矛盾。 相似文献
16.
A new bio-inspired algorithm, namely Bird Swarm Algorithm (BSA), is proposed for solving optimisation applications. BSA is based on the swarm intelligence extracted from the social behaviours and social interactions in bird swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance behaviour and flight behaviour. Birds may forage for food and escape from the predators by the social interactions to obtain a high chance of survival. By modelling these social behaviours, social interactions and the related swarm intelligence, four search strategies associated with five simplified rules are formulated in BSA. Simulations and comparisons based on eighteen benchmark problems demonstrate the effectiveness, superiority and stability of BSA. Some proposals for future research about BSA are also discussed. 相似文献
17.
针对标准樽海鞘群算法收敛精度低、收敛速度慢的问题,提出一种基于自适应惯性权重的樽海鞘群算法(AIWSSA).首先,在追随者位置更新公式中引入惯性权重因子评价个体之间的影响程度;然后,结合种群成功率与非线性递减函数对惯性权重因子进行自适应调整,使算法的全局和局部搜索能力得到更好地平衡;最后,为防止算法陷入局部最优,引入差分变异思想对非最优个体进行变异.对12个基准测试函数进行求解,实验结果表明:AIWSSA具有较高的收敛精度、收敛速度和鲁棒性; Wilcoxon统计检验结果表明:与标准樽海鞘群算法、改进的樽海鞘群算法、其他群体智能算法相比, AIWSSA表现出较好的性能.通过将其应用于两种带约束的工程设计问题,验证了AIWSSA的有效性. 相似文献
18.
针对教与学优化(TLBO)算法收敛精度较低、易于早熟收敛等问题,提出一种基于自主学习行为的教与学优化算法(SLTLBO)。SLTLBO算法为学生构建了更加完善的学习框架,学生在完成常规"教"阶段与"学"阶段的学习行为之外,将进一步对比自己与教师、最差学生的差异,自主完成多样化的学习操作,以提高自己的知识水平,提高算法的收敛精度;同时学生通过高斯搜索的自主学习反思行为跳出局部区域,实现更好的全局搜索。利用10个基准测试函数对SLTLBO算法进行了性能测试,并将SLTLBO算法与粒子群优化(PSO)算法、智能蜂群(ABC)算法以及TLBO算法进行结果比对,实验结果验证了SLTLBO算法的有效性。 相似文献
19.
蝴蝶优化算法作为新提出的自然启发算法,其寻优方式模拟了蝴蝶利用嗅觉来确定花蜜或交配对象位置的行为。针对蝴蝶优化算法求解精度不高和收敛速度慢等问题,提出一种基于自适应扰动的疯狂蝴蝶算法(CIBOA)。首先,在自身认知飞行部分引入自适应惯性权重,平衡算法的局部与全局搜索能力;其次,在全局最优位置引入扰动策略,避免算法陷入局部最优;最后,在花蜜位置引入疯狂因子以增加种群多样性,获取更好的最优解。通过8个基准函数对5种算法搜索性能在10、30和50维的情况下进行对比分析,仿真实验结果表明改进算法的综合表现要优于其他算法。 相似文献
20.
蝴蝶优化算法是近年来提出的一种新型自然启发式算法。针对基本蝴蝶优化算法收敛速度慢、求解精度低、稳定性差等问题,提出了一种融合变异策略的自适应蝴蝶优化算法。通过引入动态调整转换概率策略,利用迭代次数和个体适应度的变化信息动态调整转换概率,有效维持了算法全局探索与局部搜索的平衡;通过引入自适应惯性权重策略和局部变异策略,利用惯性权重值和混沌记忆权重因子进一步提高了算法的多样性,有效避免算法早熟收敛,同时加快了算法的收敛速度和求解精度。利用改进算法对12个基准测试函数进行仿真实验,与基本蝴蝶优化算法、粒子群算法、樽海鞘群算法、灰狼优化算法等其他算法对比表明,改进算法具有收敛速度快、寻优精度高、稳定性强等优异性能。 相似文献