共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
以硫酸溶液为浸出剂,采用常压氧化浸出法处理铜冶炼渣以回收渣中有价金属铜。考察了浸出温度,浸出时间,硫酸浓度,浸出液固比,氧化剂(双氧水)添加量对铜浸出率的影响。试验结果表明:在未加入氧化剂时,主要发生的是铜氧化物的简单酸溶反应,硫化铜几乎不溶于浸出液,因此铜浸出率很低;而随着氧化剂添加量的增加硫化铜被氧化浸出,因此铜浸出率增加很明显。此外,铜浸出率随着浸出温度,浸出时间和浸出液固比的增大而增大。浸出过程最佳的条件为:浸出温度70℃,时间180 min,硫酸浓度2 mol/L,液固比8∶1,氧化剂(双氧水)添加量400 m L/kg。铜浸出率可达到91.2%。通过对浸出渣XRD和SEM-EDS分析可得浸出渣中主要的矿物为磁铁矿。在磁场为2T的条件下,浸出渣磁选可以得到品位53.15%的铁精矿。 相似文献
5.
6.
7.
8.
9.
云南某炼锌渣中锗铟的硫酸浸出 总被引:1,自引:0,他引:1
稀散金属锗、铟是重要的战略资源,常伴生在铅锌矿或煤中,主要从锌冶炼渣或煤燃烧后的烟尘中提取。云南某铅锌矿冶炼厂的高硅炼锌渣中锗、铟含量分别为126.00、358.00 g/t,SiO2含量为24.62%,为高效低耗浸出其中的锗、铟,以硫酸溶液为浸出剂进行了浸出工艺条件研究。结果表明:在磨矿细度为-0.074 mm占81%、硫酸溶液的浓度为110 g/L、液固比为3、搅拌强度为350 r/min、浸出温度为70 ℃、浸出时间为4 h情况下,试样中锗、铟的浸出率分别达87.90和89.88%。 相似文献
10.
为了研究黄铁矿经高温焙烧制取硫酸后产生的铜品位为0.87%硫酸渣的铜浸出动力学规律,采用X射线衍射分析等方法分析了矿石的性质,研究了矿石粒度、初始酸浓度、液固比、搅拌速率、浸出温度和浸出时间等因素对硫酸渣矿样中铜浸出的影响,采用未反应收缩核模型对硫酸渣浸出过程进行动力学分析。结果表明,各因素对硫酸渣铜浸出的浸出率有较大影响;从浸出过程控制模型、浸出动力学方程、浸出反应表观活化能方面确定了硫酸渣浸出过程的主要控制步骤为内扩散过程控制,得出浸出反应的表观活化能Ea=19.96 kJ/mol。 相似文献
11.
研究了甲酸作为还原剂在硫酸介质中还原浸出低品位氧化锰矿的工艺。采用单因素试验研究了甲酸用量、硫酸浓度、反应温度、反应时间及液固比对锰、铁、铝3种金属浸出率的影响。利用XRD和SEM对矿粉和矿渣的成分和表面形貌进行了分析和表征, 利用响应曲面法对还原浸出条件进行了优化。结果表明, 各因素影响浸出率的主次顺序为甲酸用量>硫酸浓度>反应温度>反应时间。当硫酸体积分数为15%, 液固比为6, 甲酸用量0.4 mL/g, 反应时间2 h, 反应温度90 ℃时, 锰浸出率最大, 为90.05%, 此时铁和铝浸出率为80.07%和31.55%。 相似文献
12.
13.
以电解锰阳极渣为原料,乙醇为还原剂,在硫酸介质中还原浸出锰并富集铅。分别考察了浸出温度、硫酸浓度、乙醇浓度、液固比以及浸出时间对乙醇还原电解锰阳极渣浸出锰和铅的影响。结果表明:在温度为70℃、硫酸浓度为3 mol·L-1、乙醇体积分数为5 %、液固比为6∶1的条件下浸出4 h,锰的浸出率达到98.24 %,铅的浸出率仅为0.41 %。浸出条件温和、浸出效率高。乙醇作为还原剂时,其主要的氧化产物为二氧化碳和乙酸。该研究可为电解锰阳极渣的资源化利用提供参考。 相似文献
14.
15.
用正交实验法优化了在盐酸体系中二氧化锰浸出方铅矿精矿的工艺参数。直接分析和方差分析结果表明: 5种工艺参数对铅浸出率影响由大到小的顺序为: 反应体系中总液体与总固体质量比m总液/m总固, 二氧化锰与方铅矿精矿质量比m二氧化锰/m方铅矿, 盐酸浓度, 反应时间, 反应温度。最佳实验方案组合为:m总液/m总固=10、m二氧化锰/m方铅矿=1.3、盐酸浓度为3 mol/L、反应时间为60 min、反应温度为80 ℃, 该组合能使方铅矿精矿中的铅浸出率大于99.5%。 相似文献
16.
17.
高钙型低品位铜矿酸性浸出动力学研究 总被引:1,自引:0,他引:1
通过单因素实验及动力学分析研究了低品位氧化铜矿的浸出过程,考察了矿物粒度、浸出温度、硫酸浓度和液固比对浸出过程的影响。结果表明,适宜的浸出条件为: 矿物粒度-0.074 mm粒级占比85%、浸出温度60 ℃、浸出时间120 min、硫酸浓度2.5 mol/L、液固比4∶1,此时铜浸出率为96.23%; CaCO3的存在导致浸出过程硫酸消耗增加; 浸出过程可用未反应核收缩模型来描述,反应速率受固膜界面传质和扩散混合控制,浸出过程活化能为8.78 J/mol。 相似文献