首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
为改善富锂材料的电化学性能,使用Li3VO4对富锂锰基材料Li1.2Ni0.13Co0.13Mn0.54O2进行湿法包覆。对样品进行表征和电化学性能测试,结果表明,包覆工艺不会破坏富锂层状材料的结构;包覆物明显改善样品的电化学性能,其中3%包覆量的样品综合性能最好,首次放电比容量为243.2 mAh/g,库伦效率70.9%;在1C下循环50次后,容量保持率为87.2%。  相似文献   

2.
采用液相还原法制备纳米零价铁(nZVI),以其吸附废水中的Sb(Ⅲ),得到nZVI/Sb颗粒; 将其在500 ℃下氧气煅烧8 h,制得Fe3O4/Sb2O4材料; 再以葡萄糖为碳源、600 ℃氮气热处理,制备了Fe3O4/Sb2O4@C复合材料,并对其性能进行了研究。结果表明,nZVI吸附含Sb(Ⅲ)废水的适宜条件为:中性溶液Sb(Ⅲ)初始浓度100 mg/L,nZVI投加量1.2 g/L,室温下吸附50 min,该条件下废水中Sb(Ⅲ)去除率为73%; 引入Sb2O4后,铁基负极的首次放电比容量高达1065.6 mAh/g; 包覆碳后,Fe3O4/Sb2O4@C复合材料电化学性能明显改善,100 mA/g电流密度下,循环150圈后放电比容量仍可保持在483.7 mAh/g,电流密度2000 mA/g时,放电比容量仍有118.2 mAh/g。  相似文献   

3.
李伟伟 《矿冶工程》2018,38(2):128-130
在水溶液体系中, 制备了1%Al2O3修饰的镍基正极材料LiNi0.9Co0.1O2, 并研究了热处理温度对正极材料性能的影响。结果表明, 1%Al2O3修饰后没有改变正极材料的结构和形貌, 650 ℃热处理后正极材料具有最佳的电化学性能, 首次放电容量为178.4 mAh/g, 库伦效率为82.4%, 0.5C倍率50次循环后的容量保持率为88.1%。  相似文献   

4.
采用固相球磨法制备了Li2FeP2O7/C正极材料,研究了烧结温度、碳包覆含量以及碳源对其结构、形貌以及电化学性能的影响。结果表明: 高温固相烧结合成样品的适宜温度为680 ℃,以柠檬酸为碳源、碳包覆量为5%时,合成的Li2FeP2O7/C晶型完整,晶粒较小且均匀,0.1C倍率下的放电比容量可达102.6 mAh/g,0.5C倍率下的初次放电比容量可达83.4 mAh/g,循环30次后放电比容量为80.7 mAh/g,展现了较好的循环性能以及倍率性能。  相似文献   

5.
共沉淀法合成镍锰酸锂正极材料前驱体   总被引:2,自引:2,他引:0  
通过共沉淀法合成了类球形镍锰酸锂正极材料前驱体, 研究了反应温度、溶液pH值、溶剂组成和表面活性剂十六烷基三甲基溴化铵(CTAB)添加量对前驱体镍锰碳酸盐形貌、粒径及物相组成的影响。结果表明, 适宜的合成条件为:pH=9.0, 反应温度80 ℃, 乙醇与水体积比1∶3, 表面活性剂CTAB添加量为1.5倍临界胶束浓度(CMC)。在该条件下制备的前驱体镍锰碳酸盐具有层片状堆垛的类球形结构; 煅烧后得到的镍锰酸锂材料为无序型的尖晶石结构, 属于Fd-3m空间群, 结晶度高, 粒径约150 nm。对镍锰酸锂进行电化学性能测试, 结果显示, LiNi0.5Mn1.5O4在0.5C下的最大放电比容量为124.8 mAh/g, 20次循环后容量保持率为62.3%, 在大倍率下放电后再次回到0.5C, 放电比容量为73.8 mAh/g。  相似文献   

6.
分别以电解二氧化锰和四氧化三锰为原料, 采用固相法制备了2种锂离子电池正极材料——尖晶石型锰酸锂。结合X射线衍射(XRD)、扫描电镜(SEM)及电性能测试, 对两种产物的物化性能以及电性能进行了检测分析, 结果表明: 以电解二氧化锰(EMD)和Mn3O4为原料, 在合适的条件下都能制备出性能较好的锰酸锂正极材料; 由Mn3O4制备的锰酸锂呈晶粒大小较为均匀的单晶八面体形貌; 由电解二氧化锰制备的锰酸锂呈晶粒大小不均匀的二次颗粒形貌; 用Mn3O4制备的锰酸锂1C下循环700次, 其容量保持率为105.3%; 而以电解二氧化锰制备的锰酸锂1C下循环700次, 其容量保持率为79.0%。  相似文献   

7.
通过化学氧化-热还原法制备了高柔韧性、片层少的石墨烯粉体,将其与碳纳米管、炭黑制备出石墨烯复合导电浆料,并分析对比了不同片径的石墨烯复合导电浆料和常规复合导电浆料对LiNi0.5Co0.2Mn0.3O2锂离子电池性能的影响。结果表明,石墨烯含有丰富的含氧官能团,复配后的石墨烯复合导电浆料在正极材料LiNi0.5Co0.2Mn0.3O2中可以构建高效的点-线-面结构的三维空间导电网络,其中,D50片径为11.581 μm的石墨烯复合导电浆料电化学性能较为优异,在8C(20 A)大倍率放电条件下容量保持率为104.45%,1C/8C倍率循环200周后电池仍有2 121 mAh的容量,容量保持率为87.90%。  相似文献   

8.
采用溶胶凝胶法成功制备了锂离子电池Li1.2Mn0.56Ni0.16Co0.08O2正极材料,并采用扫描电子显微镜(SEM)、循环伏安(CV)及充放电等测试研究了该材料的形貌和电化学性能。SEM测试结果表明,合成的Li1.2Mn0.56Ni0.16Co0.08O2粒径约为2μm,呈长片层状结构。CV测试表明,经过首次循环后,Li2MnO3组分得到活化,并转变为具有电化学活性的LiMnO2,并造成了锂离子的不可逆损失。充放电测试表明,在0.2C倍率循环时,Li1.2Mn0.56Ni0.16Co0.08O2材料的首次放电比容量为199.7 mAh.g-1。倍率性能测试表明,在经过36次充放电循环后,仍有很高的容量保持率。  相似文献   

9.
高温固相法再生废旧磷酸铁锂电池正极材料   总被引:1,自引:1,他引:0  
通过强碱溶液浸泡过程分离废旧磷酸铁锂(LiFePO4)电池中的正极材料与铝箔集流体,经过热处理、砂磨混合和高温焙烧实现了LiFePO4的再生利用。采用XRD、SEM对再生样品的物相和形貌进行表征,结果表明,再生LiFePO4材料颗粒分布在纳米尺度下,粒径分布均匀,无团聚现象。电化学性能测试结果表明,在0.1C和5C电流密度下,再生LiFePO4放电比容量分别为165.2 和101.5 mAh/g; 在1C倍率下循环100次后,材料容量为150.1 mAh/g,保持率为97.85%,表现出较好的倍率和循环性能。该再生工艺简单、合成的材料电化学性能良好,为加快废旧磷酸铁锂电池回收和再生提供了新的借鉴。  相似文献   

10.
采用固相法合成了铝掺杂的层状高镍无钴LiNi0.95Mn0.05O2正极材料,并利用结构分析方法和电化学测试手段研究了铝掺杂对LiNi0.95Mn0.05O2正极材料晶体结构和电化学性能的影响。结果表明,Al均匀地掺杂到了正极材料二次颗粒体相中,不仅使材料晶胞参数发生了变化,还降低了材料的Li+/Ni2+混排程度。掺杂1%铝可以提高材料的长循环性能,这归因于掺杂样品中的Al能有效抑制材料在充电过程中的H2→H3相变程度。相比于未掺杂的样品,铝掺杂样品在1C、2.7~4.3 V的测试条件下循环300圈后,其容量保持率提高了11.3%。但Al3+的非电化学活性会降低材料的倍率性能。  相似文献   

11.
何敏  习小明  周友元 《矿冶工程》2014,34(4):119-121
采用二氧化锰还原法制备了锰酸锂前驱体, 将前驱体在不同温度下进行热处理, 制得尖晶石型锰酸锂。利用AAS、滴定法、XRD、SEM表征样品的元素含量、晶体结构、形貌和粒径, 并研究了不同热处理温度对锰酸锂电化学性能的影响。结果表明, 通过二氧化锰还原法合成出了具有一定尖晶石结构的锰酸锂前驱体。当热处理温度为800 ℃时, 锰酸锂的导电性最佳, 0.2C放电容量为132.7 mAh/g, 0.5C放电容量为123.9 mAh/g, 循环10次后, 容量衰减5.97%。  相似文献   

12.
通过高温固相法合成铌掺杂Li(Ni0.8Co0.1Mn0.1)1-xNbxO2(x=0,0.01,0.02,0.03)正极材料,利用X射线衍射、扫描电子显微镜以及电化学测试手段分析铌掺杂的影响。结果显示,铌掺杂没有改变材料的α-NaFeO2层状结构;充放电循环结果显示Li(Ni0.8Co0.1Mn0.1)0.98Nb0.02O2在1C充放电倍率、电压为3.0~4.3 V条件下,经过50周循环后的容量保持率为95.9%,而没有经过掺杂处理材料的容量保持率为85.3%;交流阻抗测试结果证明了铌掺杂可以降低材料的电化学阻抗,从而提高材料电化学性能。  相似文献   

13.
采用共沉淀法制备Ni0.5Co0.2Mn0.3(OH)2前驱体,并通过高温固相法合成LiNi0.5Co0.2Mn0.3O2正极材料,研究了反应时间对Ni0.5Co0.2Mn0.3(OH)2前驱体和LiNi0.5Co0.2Mn0.3O2正极材料的形貌、结构以及电化学性能的影响。结果表明,随着反应时间增加,前驱体和正极材料的二次颗粒粒径逐渐增大;若反应时间过短,二次颗粒粒径小,易加剧电化学循环过程中材料与电解液的副反应,正极材料循环性能较差;若反应时间过长,二次颗粒粒径过大,增加了锂离子扩散路径,也不利于正极材料在高倍率下的循环。反应16 h制备的LiNi0.5Co0.2Mn0.3  相似文献   

14.
采用两步法制备了具有核壳结构的钛铬酸锂/钛酸锂复合材料,比较了包覆钛铬酸锂前后和不同干燥方式下负极材料的形貌和电化学性能。结果表明,喷雾干燥法制备的复合材料具有较好的球形结构和表面特性,综合电化学性能较好,可逆比容量可达到160.7 mAh/g, 200次1C循环后容量保持率95.4%,材料在15C充放电倍率下其比容量为1C的81%,倍率性能优异。利用交流阻抗测试,对材料的失活机理进行了初步探索,表明电荷和锂离子传递阻力的增加是材料容量衰减的主要原因  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号