首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《煤炭技术》2016,(5):218-220
针对急倾斜煤层群倾角大造成的瓦斯防治困难问题,基于涌山矿急倾斜煤层群保护层开采地质条件,通过实测分析下保护层开采卸压效果,提出了在工作面回风巷施工顶板钻场采用高冒孔抽放和采空区预埋管抽放相结合方式抽放采空区瓦斯。  相似文献   

2.
为高效抽采中梁山南矿急倾斜近距离薄煤层群保护层开采的卸压瓦斯,采用理论计算与现场考察试验相结合的方法,研究了中梁山煤矿保护层开采采动裂隙分布及卸压瓦斯运移规律。利用保护层开采的卸压增透效应,结合中梁山南矿地质条件,建立了急倾斜近距离薄煤层群卸压瓦斯分层分源综合立体抽采技术,瓦斯抽采率达到了70%以上,克服了单一平面抽采技术的不足。  相似文献   

3.
基于“先抽后采,以风定产,监测监控”的瓦斯治理方针,结合屯宝煤矿生产实际情况,分析了对工作面采空区进行瓦斯抽采的必要性和可行性。对1153综放工作面进行了瓦斯抽采可行性评价,对高位钻孔法与埋管法抽采采空区瓦斯进行了技术和经济比较,确定采空区瓦斯进行高位钻孔抽采技术方案。经过现场实践,得到了该地质条件下采空区瓦斯抽采高位钻孔布置参数,验证了高位钻孔抽采采空区瓦斯是治理矿井瓦斯的有效技术措施。  相似文献   

4.
《煤炭技术》2016,(2):171-172
以煤田内宏远煤矿开采的B1煤层为例,分析了急倾斜自燃煤层采空区瓦斯抽采易造成采空区火灾、不抽采易造成上隅角瓦斯积聚甚至超限的难点与不足,针对B1煤层在回采和掘进中存在具体问题,对矿井瓦斯抽采方式进行了改进,提出了适合高瓦斯矿井急倾斜自燃煤层的瓦斯抽采技术,取得了良好的效果。  相似文献   

5.
高瓦斯煤层高位钻孔瓦斯抽采技术试验研究   总被引:7,自引:6,他引:1  
赵杰  刘健  王新颖  刘全 《煤炭技术》2012,31(12):72-74
针对在高瓦斯煤层回采过程中,煤与瓦斯突出综合检测指标经常超限、瓦斯抽采率低等问题,提出了在风巷施工高位钻孔的瓦斯抽采技术,阐述了瓦斯抽采技术的工艺流程和钻孔的布置参数。研究表明:在高瓦斯煤层回采过程中采用高位钻孔的抽采措施,可有效地解决瓦斯抽采率低的问题,降低了回风流中的瓦斯体积分数,提高了瓦斯抽采量和抽采率,减少了向工作面的瓦斯涌出量,保证了工作面的安全回采。  相似文献   

6.
近距离煤层群采动卸压规律及瓦斯抽采技术   总被引:1,自引:0,他引:1  
近距离高瓦斯煤层群开采时,受采动卸压作用工作面上部煤层瓦斯及底板下部煤层瓦斯均会对工作面造成影响导致瓦斯超限,需同时治理。针对杏花煤矿28#煤层右二工作面近距离高瓦斯煤层群开采时瓦斯涌出量大的问题,通过理论计算及数值模拟分析了顶底板煤岩破坏卸压规律为抽采工程设计提供了依据,结合工程经验采用了高位钻场、低位钻场及高抽巷相结合的立体化抽采措施控制本煤层及邻近层瓦斯,并取得了良好的应用效果。  相似文献   

7.
刘建高 《煤炭工程》2014,46(3):61-64
对于岩体而言,孔隙率应该是其固有的物理属性,而作者通过压汞实验发现煤体的孔隙率却可以随着受压和卸载作用有较大的变化,并直接影响煤层瓦斯区域预抽的效果。文章从如何增加预抽瓦斯量的本质出发,通过对孔隙率和游离瓦斯量的计算和分析,实验中利用压汞法测量被保护煤层煤样孔隙率,利用间接和直接方法测定区域瓦斯压力,通过计算分析和现场瓦斯抽采实测数据统计验证,孔隙度的增加对游离瓦斯量的增加和卸压瓦斯抽采效果的提升起到决定性的作用;并在实践中发现保护层工作面后方60m的范围内,其下伏被保护煤层的孔隙率和游离瓦斯量达到最大值,卸压瓦斯抽采效果最好。  相似文献   

8.
急倾斜煤层采空区瓦斯抽采钻孔参数研究   总被引:1,自引:1,他引:0  
介绍了急倾斜煤层采空区上方"三带"的分布特点,对抽采钻孔的流量、浓度进行调研和分析,最终确定了顶板走向钻孔的终孔层位、钻场间距以及钻孔施工的角度、方位、长度等参数,从而进行最有效的瓦斯抽采。  相似文献   

9.
《煤》2015,(10):19-21
针对急倾斜突出煤层群瓦斯抽采作业的特殊性,基于急倾斜煤层顶板冒落规律,对被保护层瓦斯抽采效果进行分析,研究被保护层卸压瓦斯运移规律。研究结果表明:受急倾斜煤层采面倾斜上、中、下段岩层移动程度不同的影响,被保护层沿倾斜方向由下至上产生的裂隙逐步增大并彼此贯通,下部煤层卸压瓦斯沿着裂隙往上部流动,上部风巷抽采瓦斯浓度是机巷的2~3倍,流量是机巷的3~4倍,倾斜段上部瓦斯卸压效果明显。  相似文献   

10.
通过对矿井不同生产条件的穿层钻孔、顺层钻孔卸压瓦斯抽采消突技术的探索及应用,消除了采掘工程中的瓦斯突出和瓦斯超限,确保了矿井安全生产。  相似文献   

11.
在矿井瓦斯赋存的基础上,结合上邻近煤岩层采动裂隙场演化及分布规律的相关理论,探索上邻近煤岩层采动卸压瓦斯分布富集规律,研究12号煤层卸压瓦斯分源抽采技术并进行运用,有效进行瓦斯防治,实现安全生产。  相似文献   

12.
以山西小回沟煤业有限公司2202工作面工程为背景,采用理论分析与现场实际相结合的方法,确定出距2#煤层顶板33~42.7 m、回风巷10~34 m为卸压瓦斯富集区域,并利用ZDY12000LD与ZDY4200LPS(A)钻机精准施工钻孔进行稳定高效抽采.在定向钻孔与普通钻孔相结合的精准瓦斯抽采方式下,2202工作面在回...  相似文献   

13.
《煤矿安全》2016,(9):67-70
为解决工作面回采期间上隅角瓦斯超限问题,针对硫磺沟煤矿(4-5)04工作面实际情况,采用物理相似模拟方法,对工作面采动覆岩"三带"分布特征及规律开展研究,结合工作面实际情况设计高位钻孔抽采上隅角瓦斯,并对抽采瓦斯效果开展实时观测与分析。研究结果表明:(4-5)04工作面上隅角处的垮落角为71°左右且顶板裂隙较为发育;该工作面垮落带高度为25~26.8 m,断裂带高度为109.2~110 m,初次来压步距为36 m,周期来压步距平均为16.6 m,切眼附近裂隙区宽度约为40 m,回风巷及进风巷附近约30 m,工作面附近约20~40 m;高位钻孔抽采浓度为19.85%~23%,抽采过程中上隅角及工作面的瓦斯浓度分别为0.15%~0.48%及0.08%~0.45%,避免了回采期间上隅角瓦斯超限,保证工作面安全高效回采。  相似文献   

14.
综放工作面高位裂隙钻孔瓦斯抽放技术实践   总被引:1,自引:0,他引:1  
针对矿区煤层透气性系数低、采前瓦斯预抽效果差、工作面瓦斯易超限的实际情况,鹤壁三矿通过高位裂隙抽放钻孔对煤岩层卸压带瓦斯进行抽放,解决了工作面的瓦斯超限问题,实现了安全生产,为矿区瓦斯治理提供了一种有效途径。  相似文献   

15.
以小回沟煤业近距离煤层开采采空区瓦斯治理为工程背景,采用理论分析和现场试验相结合的方法,开展了近距离煤层采空区卸压瓦斯大直径钻孔抽采试验研究;对大直径钻孔采空区卸压瓦斯抽采原理进行了分析,并在2201首采工作面进行了现场试验。试验结果表明:1个大直径钻孔抽采影响范围为30~50 m,1个大直径钻孔的抽采纯流量相当于580个小直径对穿孔抽采纯流量,大直径钻孔累计抽采瓦斯纯量为701 120.67 m3,平均瓦斯抽采浓度为2.24%,平均混合抽采流量为166.3 m3/min,上隅角瓦斯最大瓦斯浓度0.67%,工作面最大日产量9 370 t,保证了工作面初次来压阶段的工作面采空区瓦斯治理。  相似文献   

16.
缓倾斜煤层综放工作面瓦斯综合治理技术实践   总被引:1,自引:0,他引:1  
针对屯宝煤矿缓倾斜煤层综放工作面产量高、瓦斯涌出量大的问题,在对I011402综放工作面瓦斯涌出来源分析基础上,根据工作面采掘部署及瓦斯地质条件,提出了以采前煤层瓦斯超前预抽、回采期间边采边抽以及采空区高位钻孔抽采为主,通风稀释瓦斯为辅的综放工作面瓦斯综合治理技术,并进行了现场应用。研究结果表明,工作面瓦斯抽采率达到了60%以上,上隅角最大瓦斯浓度仅为0.42%,回风最大瓦斯浓度为0.36%,有效解决了回采工作面瓦斯治理问题,保证了工作面安全回采。  相似文献   

17.
为高效抽采中梁山南矿急倾斜近距离上保护层开采后的卸压瓦斯,开展了急倾斜近距离上保护层开采卸压瓦斯运移规律研究,利用保护层开采产生的"卸压增透效应",结合该矿实际情况,对被保护层的卸压瓦斯抽采参数进行了优化。  相似文献   

18.
19.
针对沙曲矿2号煤层近距离高瓦斯煤层群开采时瓦斯涌出量大的问题,通过理论计算及数值模拟分析了顶底板煤岩破坏卸压规律,结合工程经验通过采用顶板高位钻孔布置在工作面上方22.5m裂隙带内,以控制2号煤层及采空区瓦斯,而底板定向长距离钻孔布置在距离2号煤层底板15 m范围内,以控制下伏煤层瓦斯;形成了立体瓦斯抽采模式来强化瓦斯抽采,消除了本煤层及下伏煤层的突出危险性。  相似文献   

20.
急倾斜特厚煤层水平分段开采工作面采放比大、瓦斯涌出复杂,工作面下部卸压煤体瓦斯涌出量占工作面瓦斯涌出总量比例过高,在开采过程中易出现回采工作面回风隅角瓦斯超限问题。为有效解决急倾斜特厚煤层开采工作面回风隅角瓦斯超限问题,以神华新疆能源有限责任公司乌东煤矿水平分段开采工作面5754502为例,理论分析了工作面底板及下部煤体的破坏规律,并对底板破坏深度和下部煤体破坏深度进行了理论计算,根据理论分析和计算结果对工作面下部煤体卸压瓦斯拦截抽采钻孔进行了布置及优化,最后统计、分析了工作面下部卸压拦截抽采钻孔抽采参数随着工作面推进的变化情况。研究结果表明:5754502工作面开采对煤层底板破坏深度为11.88 m,其下部煤体垂直破坏深度为7.38 m,最大破坏深度距工作面端部的水平距离为10.3 m;随着工作面的推进,下部煤体中的钻孔逐步进入卸压区,卸压抽采后比之前的抽采瓦斯体积分数、瓦斯流量均有显著提高,其卸压拦截抽采钻孔的抽采纯流量比卸压前平均提高了3.2倍,卸压增流效应显著;综合采取采空区埋管抽采技术和卸压拦截抽采技术,使5754502工作面在开采过程中的瓦斯抽采率达到59.6%,回风隅角瓦斯体积分数控制在0.8%以下,实现了瓦斯零超限,保障了工作面的安全生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号