首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caihang Liang 《传热工程》2014,35(11-12):1043-1049
An independent air dehumidification system is helpful to improve indoor air quality and decrease energy consumption by heating, ventilation, and air conditioning (HVAC). A refrigeration dehumidification system with membrane-based total heat recovery is the key equipment to realize this goal. The system comprises two subsystems: a membrane total heat recovery and a direct expansion refrigeration system. The total heat exchanger has a membrane core where the incoming fresh air exchanges moisture and temperature simultaneously with the exhaust air. In this manner, the total heat or enthalpy from the exhaust air is recovered. Then the fresh air flows through a cooling coil where it is dehumidified below the dewpoint. Finally, the cold and dry air is supplied to indoors. A prototype of practical application is designed and fabricated. Experiments are conducted under variable operating conditions in the psychrometric calorimeter chamber. The effects of varying operating conditions like temperature and air humidity on the air dehumidification rate, cooling power, coefficient of performance, and compressor power are evaluated with indoor exhaust air dry bulb 27°C, wet bulb 19°C, and fresh air flow rate 200 m3/h. In comparison with a conventional refrigeration dehumidification system, the coefficient of performance and air dehumidification rate of the prototype are 2.3 times and 3 times higher, respectively. The performance of the prototype is rather robust under a hot and humid environment.  相似文献   

2.
In this study condensation heat transfer on a cold inclined circular cylinder due to natural convection for various conditions is investigated experimentally. The cylinder is placed in an isolated test room to permit pure natural circulation of ambient air. Ambient temperature and humidity of the test room are controlled by a refrigeration cycle and humidifying. The ambient relative air humidity changed in the range of 30 to 50% and temperature from 25 to 35 °C. The ethylene‐glycol/water solution is used as a refrigerant to control and keep the temperature of the test section at a constant value. The cold surface temperature is varied from 2 to 6 °C. The condensation rate and heat flux are found to depend mainly on time, temperature difference between ambient air and cold surface, ambient relative humidity, and tube inclination. Results are plotted for various conditions with respect to time. The experimental results are used to propose a correlation to predict the condensate mass flow rate for free convection heat transfer. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21015  相似文献   

3.
《Energy》2006,31(14):2739-2749
This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 °C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods.  相似文献   

4.
为提高淡水产量,设计一种太阳能负压式太阳能加湿除湿海水淡化系统,通过减小加湿腔体内压强来增加湿空气中含湿量,湿空气分别在液环真空泵和除湿腔内冷凝收集得到淡水。湿空气中含湿量上升,日产淡水总量增加。当湿空气温度70 ℃时,加湿腔压强从90 kPa减至70 kPa,含湿量增加154.9 g/kg;加湿腔压强70 kPa时,12:00—14:00可稳定产淡水1.8 kg/h以上,最高可达2.1 kg/h。装置性能系数GOR最高可达1.7。  相似文献   

5.
A solar-regenerated liquid desiccant ventilation pre-conditioning system has been installed and experiments were carried out for a period of nine months covering rainy, cold, and hot seasons in a hot and humid climate (Thailand). A heat exchanger was used to cool the dehumidified air instead of typical evaporative cooling to maintain the dryness of the air. The use of solar energy at the regeneration process and cooling water from a cooling tower makes the system more passive. The evaporation rate at the regeneration process was always greater than the moisture removal rate at the dehumidification process indicating that the concentration of the desiccant in the system would not decrease and so the performance would not drop during continuous operation. The system could reduce the temperature of the delivered air by about 1.2 °C while the humidity ratio was reduced by 0.0042 kgw/kgda equivalent to 11.1% relative humidity reduction. The experimental results were also compared with models in literature.  相似文献   

6.
The desalination of adulterated water for potable water is very important and in-demand because of the scarcity of the potable water. The bubble column (BC)–type humidification-dehumidification (HDH) desalination systems have shown promising results for low quantum need of fresh water. The present work consists of bubbler humidifier for increasing the humidity of atmospheric air and thermoelectric cooling (TEC) modules for the dehumidification of the humidified air. The air and water have been heated through external device for the sake of performance enhancement. The work of the proposed HDH system has been assessed experimentally as well as theoretically in order to identify the impact of system operational parameters like temperature of air and water, diameter of hole on the periphery of circling tube, height of hot water column, and the air mass flow rate on the production of fresh water. The daily distillate production achieved during the investigation was in the range of 7 to 13 L/d for different operational parameters although the best experimental productivity of the system was reported 12.96 L/d for 2 mm of hole diameter, 0.016 kg/s of air mass flow rate, 60°C of temperature of water, 27°C of temperature of air, and 7 cm of water column height in the humidifier. The gained output ratio of the system was 0.8 for 0.016 kg/s of mass flow rate of air. A theoretical model of the system is also proposed, and results of model are validated against experimental results, which have shown the great agreement.  相似文献   

7.
This paper studies the feasibility of using a solar-powered liquid desiccant system to meet both building cooling and fresh water needs in Beirut humid climate using parabolic solar concentrators as a heat source for regenerating the liquid desiccant. The water condensate is captured from the air leaving the regenerator. An integrated model of solar-powered calcium chloride liquid desiccant system for air dehumidification/humidification is developed. The LDS model predicted the amount of condensate obtained from the humid air leaving the regenerator bed when directed through a coil submerged in cold sea water. An optimization problem is formulated for selection and operation of a LDS to meet fresh water requirement and air conditioning load at minimal energy cost for a typical residential space in the Lebanon coastal climate with conditioned area of 80 m2 with the objective of producing 15 l of fresh drinking water a day and meet air conditioning need of residence at minimum energy cost. The optimal regeneration temperature increases with decreased heat sink temperature with values of 50.5 °C and 52 °C corresponding to sink temperatures of 19 °C and 16 °C.  相似文献   

8.
《Energy》2004,29(1):19-34
In hot and humid climates such as in the Sultanate of Oman, the humidity puts extra load on the electric vapor-compression air conditioning (VAC) systems. Liquid and solid desiccants can reduce the moisture content of humid air and thus reduce the latent load imposed on the VAC systems. In the present work, the performance of air dehumidifiers using triethylene glygol (TEG) as desiccant was investigated. Three differently structured packing densities were used (77, 100 and 200 m2/m3). The performance of the dehumidifier was evaluated and expressed in terms of the moisture removal rate (mcond) and the dehumidifier effectiveness (εy). The experimental work was undertaken to study the effects of several influencing design factors on this performance. The design factors covered included the air and TEG flow rates, air and TEG inlet temperatures, inlet air humidity and the inlet TEG concentration. The desiccant flow rate investigated was much less than that covered in previous studies and the range of the inlet temperatures of air and desiccant was significantly wider. The objective this study was to use the multiple regression method and the principal component analysis to obtain statistical prediction models for the water condensation rate and the dehumidification effectiveness in terms of these design factors. The results of both techniques agree with each other affirmed that the desiccant flow rate, desiccant inlet concentration and air inlet temperature are the most significant variables in predicting mcond, whereas desiccant flow rate, air inlet temperature and packing density are the most significant variables in predicting εy.  相似文献   

9.
Processes involving heat transfer from a humid air stream to a cold plate, with simultaneous deposition of frost, are of great importance in a variety of refrigeration equipment. In this work, frost growth on a vertical plate in free convection has been experimentally investigated. The cold plate (0.095 m high, 0.282 m wide) was placed in a narrow (2.395 m high, 0.01 m deep) vertical channel open at the top and bottom in order to permit the natural circulation of ambient air. The cold plate temperature and the air relative humidity were varied in the −40 to −4 °C and 31–85% range, respectively, with the air temperature held fixed at 27 °C (±1 °C). The main quantities (thickness, temperature and mass of frost, heat flux at the cold plate), measured during the time evolution of the process, are presented as functions of the input parameters (relative humidity and cold plate temperature); in particular, the role exerted by the plate confinement on the frost growth is discussed. Data are recast in order to identify compact parameters able to correlate with good accuracy frost thickness, mass and density data.  相似文献   

10.
In this paper, we present a method of calculation by partial or total condensation of the water vapour contained in the humid air, over the smooth or finned tubes-heat recuperators. This study presents an implementation of the film method in a computer code developed here. The mathematical model used is validated by our experimental approach, using tubes bundles in staggered and aligned arrangements. The temperature of the humid air varies between 100 °C and 350 °C. The determination of the fin portion, which functions in wet regime was carried out by the calculation of temperature field over a circular fin. The heat transfer coefficient by convection around the fin is supposed to be constant. The computer code predicts the heat flux exchanged in a range of 20% and 5%, in wet and dry regime, respectively. The apparent heat transfer coefficient by condensation can exceed 10 times the value of the heat transfer coefficient.  相似文献   

11.
Weixing Yuan  Bo Yang  Maolin Wei  Binghan Guo 《传热工程》2014,35(11-12):1050-1060
A novel waste-heat-driven hybrid solid–liquid dehumidifier (HSLD) system is proposed and its performance modeling is carried out. This new type of dehumidification system can be efficiently driven by low-temperature heat sources such as solar energy, while achieving high dehumidification performance due to its unique serial dehumidification and regeneration processes. The process airflow is first dehumidified by a liquid dehumidifier and then by a solid one; at the same time, the regeneration air first regenerates the solid dehumidifier and then the liquid one. The reason is because the liquid dehumidifier is more efficient to dehumidify humid air with low-temperature regeneration heat, while the solid dehumidifier can effectively dehumidify drier air with higher temperature regeneration heat. Theoretical analysis and performance analysis of the HSLD system are carried out under varied process air conditions and regeneration temperatures. The results show that this new HSLD system is promising for dehumidification performance improvement with low-temperature regeneration heat. It can be efficiently driven by waste heat as low as 60~70°C with a satisfactory dehumidification performance. For the HSLD system, the dehumidification ratio between the liquid and the solid dehumidifiers varies according to the regeneration temperature and process air inlet conditions.  相似文献   

12.
In this paper, an experimental study of the condensation of water vapor from a binary mixture of air and low‐grade steam has been depicted. The study is based upon diffusion heat transfer in the presence of high concentration of noncondensable gas. To simplify the study, experimental analysis is supported by empirical solutions. The experimental setup is custom designed for testing a new shell and tube type heat exchanger supplied by the manufacturer. Air–vapor mixture at 80 °C (max) and 20.2% relative humidity enters the heat exchanger at a mass flow rate of 480 kg/h and condenses 27 kg/h vapor using cooling water at an inlet temperature of 7 °C to 10 °C and mass flow rate of 3500 kg/h. By using the experimental data of constant inlet air mass fraction, mixture gas velocity, and different volumetric flow rate of the cold fluid, the local heat transfer coefficients are obtained. The main objective of this work is to establish an approximate value for surface area and overall heat transfer coefficient of a horizontal shell and tube condenser used in process space. Under designed working conditions, the condenser is found to work efficiently with 90% vapor condensation by mass.  相似文献   

13.
Passive evaporative cooling has great potential as an alternative to conventional air‐conditioning in arid hot climates because of its low cost and zero pollution. This paper describes a novel evaporative cooling system with an automatic wind‐tracking device to improve its operating efficiency. The design and operating principles are discussed. A mathematical model is simplified by the assumption of convective heat and mass transfer of staggered streamlets of water. A computer program has been developed to calculate the deflection and length of spray water streamlets, as well as evaporative water mass, minimum cooled water temperature and required cooling time. A typical example illustrates that approximately 20 kg water are evaporated and around 26 min are required for 980 kg of water to be cooled from 28°C to the wet bulb temperature of 19.2°C of ambient air in a typical arid hot climate (relative humidity = 0.30, dry bulb temperature = 32°C and wind velocity = 4 m s?1). The application of adsorbents, would allow the evaporative cooling system to be applied in hot, humid climates, in addition to hot climates with low humidity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a highly effective desiccant rotor that can be regenerated at a temperature between 20 and 30°C, corresponding to return air exhausted from conditioned spaces. The desiccant rotor consists of a honeycomb structure, which is coated with organic polymer desiccant materials. For a specific operating condition, the desiccant rotor functions as a rotary total heat exchanger. Desiccant rotors with thickness of 0.2 m and more lead to both higher dehumidification and temperature efficiencies compared to conventional total rotary heat exchangers in different states of the inlet process and regeneration airflows. Both the dehumidification and temperature efficiencies achieve 100% at a thickness of 0.4 m, and at rotational speeds between 100 and 300 rph. Dehumidification, together with cooling, is very effective. For the desiccant rotor with a thickness of 0.4 m, the humidity change of the process air corresponds closely to isothermal dehumidification. In terms of the dehumidification and cooling functions, the performance of the desiccant rotor with thickness of 0.2 m and more is very advantageous compared to conventional desiccant rotors and rotary total heat exchangers.  相似文献   

15.
Experiments have shown that frost growth on cold surfaces exposed to warm humid air streams can be reduced significantly by means of crosslinked hydrophilic polymeric coatings. This derives from the ability of these materials, under frosting conditions, to absorb available water, and hence retard the growth of frost when compared to an uncoated metallic surface. The extent of reduction of frost growth appeared to vary with the water absorbing potential of the polymer-coat, as well as its water content prior to frosting. In general, measurements in over two hours of testing, indicated that the reduction in frost growth rate and subsequently frost thickness lies in the range, 10–30%. The absorbed water improves the thermal conductivity of the polymeric coating. This, consequently, lowers the total thermal resistance between the air stream and the cold plate, and hence retards the frost surface temperature in its rise towards 0°C, an effect that would prolong the effective operation time of the thermal process before there is need for defrosting. Further observations made in this study tend to suggest that the nature of the frost formed with an air stream of low relative humidity (RH) differed from that resulting from a high RH air stream.  相似文献   

16.
ZnSO4·7H2O is modified by impregnation method with zeolite matrices (13X-zeolite and LTA-zeolite) to improve its hydration performance. Water sorption ability of composites was carried out in a constant temperature and humidity environment. Composite of ZnSO4/13X-zeolite showed highest water sorption (0.26 g/g) at 75% relative humidity under 45°C air temperature, which is double than pure ZnSO4·7H2O. This is due to larger surface area (491 m2 g-1) and pore volume (0.31 cm3). Furthermore, both hydration rate and adsorption mass depends on relative humidity and hydration temperature. However, if the air temperature and the relative humidity are higher than 45°C and 75% RH, the hydration ability of the composite material is significantly reduced. Besides, X-ray measurements of composite (ZnSO4/13X) revealed that sorption/desorption process, crystallinity and phase of partially hydrated ZnSO4 remain the same, which enhance the adsorption mass and enthalpy during the hydration process.  相似文献   

17.
针对果蔬预冷设备应用场合,提出并设计了一套以冰浆作为载冷介质的湿冷热湿交换器,并搭建单体性能测试台架,以出风温度和相对湿度为指标,通过改变填料类型(金属、纸质填料)、载冷介质种类(冰浆、冷水)和喷淋流量进行了性能实验研究。结果表明:实验工况下,金属填料的换热性能较纸质填料好;以冰浆作为载冷介质相比以冷水的情况,可以获得更低的出风温度,但出风相对湿度也有所降低;随着进风干球温度的降低,出风温度明显降低,而出风相对湿度变化并不明显;在一定范围内,提高载冷介质的喷淋流量,有利于湿冷热湿交换器出风温度的降低和出风相对湿度的升高;低浓度的冰浆可以在湿冷热湿交换器中稳定运行,且降温效果较冷水湿冷热湿交换器更加明显,虽然相对湿度略有下降但仍然可保持在90%左右,适用于果蔬预冷和保鲜。  相似文献   

18.
A finite difference model describing simultaneous heat and mass transfer in a hybrid liquid desiccant cooling system is presented in this paper. This type of system provides cooled and dehumidified air by a combination of a packed absorber tower and a conventional vapour compression system. The model will allow the prediction of the rate of condensation in the dehumidification tower and the evaporator of the vapour compression system, the conditions of the air and liquid desiccant leaving the tower, the conditions of the air leaving the evaporator, and other important parameters. The mathematical model results were validated with existing experimental data for a similar system with an uncertainty of 10.5% for the total rate of condensation and 0.8°C for the evaporator air exit temperature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a theoretical feasibility study of three dehumidification systems to achieve air with dew points down to (?) 40 °C. The systems consist of compressors, heat exchangers, expanders and heaters. A thermodynamic model has been developed of the systems to study the effect of the compressor, expander, and heat recovery heat exchanger efficiency as a function of pressure ratio, net required work, quantity of condensed moisture, and system outlet dew point temperature. The analysis has revealed that the selection of a heat recovery heat exchanger is critical for an efficient dehumidification system, where compressor efficiency has the dominant effect on power consumption.  相似文献   

20.
We propose dimensionless correlations for frost properties on a cold cylinder surface. Frosting experiments were performed while changing various frosting parameters such as the air temperature, cold cylinder surface temperature, air velocity, and absolute humidity. The experimental data showed that a uniform frost layer grew around the circumference of the cylinder at a high air velocity. Dimensionless correlations for the thickness, density, and surface temperature of the frost layer, and for the heat transfer coefficient were obtained as functions of the Reynolds number, Fourier number, absolute humidity, and dimensionless temperature. The applicable ranges of these correlations are Reynolds number of 700–3000 (air velocities of 0.5–2.0 m/s), Fourier number of 56.8–295.7 (operating time of 0–100 min), absolute humidity of 0.00280–0.00568 kg/kga, air temperatures of 3–9 °C, and cold cylinder surface temperatures of ?32 to ?20 °C. The proposed correlations agreed with the experimental data within an error of 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号