首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
根据某低品位铜矿山的试验研究及生产实践,进行了不同品位铜矿石的选冶工艺经济比较,结果表明,品位较低铜矿石更适合生物堆浸工艺,品位较高的铜矿石更适合浮选工艺。若同时采用低品位矿石进行生物堆浸,高品位矿石进行碎磨浮选的联合选冶工艺,将有效地降低采矿境界品位,提高资源的利用率。  相似文献   

2.
徐彪  王鹏程 《中国矿业》2012,21(1):90-92,95
安徽某硫化矿是以硫为主,伴生铜、金、银、铁等多种金属的大型矿山。针对该矿特点,选择铜优先浮选-浮选尾矿磁选铁-硫精矿焙烧制硫酸-硫酸渣氰化浸出金和银的工艺流程,得到铜精矿品位20.39%,硫精矿品位50.85%,金的总回收率80.81%,银的总回收率70.66%,铁精矿品位64.44%的较好选矿指标。研究结果为该多金属硫化矿提供了一套经济合理、技术可行的工艺流程。  相似文献   

3.
广东某含硫铁低品位铜矿石主要有用元素铜、硫、铁品位分别为0.51%、27.68%、34.07%。铜赋存状态复杂,以次生硫化铜形式存在的铜占总铜的54.91%,水溶性铜占总铜的26.39%,采用常规浮选方法选别铜回收率低。为探索该矿石中铜、硫、铁的高效分选工艺,对其进行了选冶工艺研究。结果表明:原矿磨细至-0.074 mm占72%时,采用pH=3的硫酸溶液为浸出剂,在液固比为4 mL/g、搅拌转速为1 400 r/min、浸出时间为24 h条件下浸铜,可以获得铜浸出率为93.33%的指标;铜浸渣经自来水搅拌洗涤至pH=6以后,以丁黄药为捕收剂、2号油为起泡剂,经1粗1扫硫浮选,可获得硫品位为48.44%、对铜浸渣回收率为95.57%的高品质硫精矿;浮硫尾矿在磁介质为Φ2 mm棒介质、脉动冲程为16 mm、冲次为280次/min、背景磁感应强度为0.6 T条件下,经1次高梯度强磁选选铁,可获得铁品位为51.42%、对铜浸渣回收率为17.02%的铁精矿。以上试验结果说明,采用铜浸出-硫浮选-铁磁选的工艺流程可以实现矿石中铜硫铁的有效分离。  相似文献   

4.
针对某矿山硫化铜矿含炭高、有用矿物嵌布粒度细、铜及伴生银矿物回收率低,精矿质量差等问题,本试验采用硫化钠做活化剂,铁铬盐木质素作为炭质矿物的抑制剂,丁基黄药与FZ-9538做组合捕收剂进行铜(银)硫混浮-铜硫分离,且经过闭路试验获得了铜精矿中铜品位22.23%、回收率81.05%,银品位2010.85 g/t、回收率69.80%,硫精矿硫品位36.28%、回收率42.02%的良好的选矿指标。  相似文献   

5.
针对刚果(金)某铜钴矿氧化率低、直接浸出回收率低的问题,采用浮选回收硫化铜钴精矿、硫酸浸出浮选尾矿工艺流程处理该矿石。结果表明,采用硫化矿闭路浮选得到的硫化精矿中铜品位50.81%、钴品位1.62%,铜回收率24.79%、钴回收率11.10%; 浮选尾矿在液固比2∶1、硫酸用量202 kg/t条件下常温搅拌浸出3 h,铜浸出率93.98%,钴浸出率72.44%; 选冶综合回收率铜95.47%,钴75.50%,酸耗199.58 kg/t。与原矿直接硫酸浸出工艺相比,铜回收率提高了14.95个百分点,钴浸出率提高了6.93个百分点。研究成果可为同类矿物的开发利用提供技术依据。  相似文献   

6.
某铜矿选矿工艺方案   总被引:1,自引:0,他引:1  
代必虎 《现代矿业》2011,27(5):93-94
介绍了东南某大型低品位铜矿采用生物湿法堆浸处理铜矿石工艺,该工艺投资少、能耗低、污染轻,但铜回收率低于传统浮选工艺,且不能回收伴生元素。针对含伴生元素的情况,从技术经济角度对生物湿法堆浸工艺和传统浮选工艺两种方案进行比较,经比较采用浮选工艺,可提高铜回收率,实现资源综合利用,且经济效益明显提高。  相似文献   

7.
介绍了东南某大型低品位铜矿采用生物湿法堆浸处理铜矿石工艺,该工艺投资少、能耗低、污染轻,但铜回收率低于传统浮选工艺,且不能回收伴生元素。针对含伴生元素的情况,从技术经济角度对生物湿法堆浸工艺和传统浮选工艺两种方案进行比较,经比较采用浮选工艺,可提高铜回收率,实现资源综合利用,且经济效益明显提高。  相似文献   

8.
低品位铜矿选矿工艺研究   总被引:4,自引:1,他引:3  
对某低品位铜矿石的选别工艺进行了试验研究。通过浮选条件试验,确定采用一段粗磨(细度-74μm含量占51%)丢尾、闪速浮铜、铜硫混浮再磨分选流程,得到了含铜品位31.17%、铜回收率93.53%、伴生金回收率52.17%的铜精矿和含硫43.2%、回收率44.31%的硫精矿。结果表明,此选别工艺可有效处理该低品位铜矿石。  相似文献   

9.
云南某难选氧硫混合铜矿石的选矿试验研究   总被引:1,自引:1,他引:0  
云南某铜矿石含铜1.02%,矿石中铜矿物种类复杂,结合率高,钙镁含量高,属典型的难选氧硫混合铜矿石。针对该矿石性质,对该铜矿石进行了详细的选冶试验研究:先将该铜矿强化浮选-反浮选脱钙镁,再将中矿进行加温强化浸出试验。最终确定了较佳的工艺条件为:经过一段磨矿,三次粗选,三次精选的闭路流程回收精矿,全中矿混合浸出,液固比3:1,矿浆温度70℃,搅拌速度300rpm,反应时间2h。研究结果表明,在此工艺条件下,采用混合浮选—强化捕收—反浮选脱钙镁—中矿加温浸出的选冶联合工艺可获得铜精矿品位10%左右,铜综合回收率大于70%,电解铜吨铜耗酸小于20t的技术经济指标。为该类铜矿石的分选提供一种新的途径。  相似文献   

10.
对某铜品位为0.96%的单一铜矿石,为进一步提高铜矿物的回收率,在原矿含有少量磁性铁矿物时,对磨矿产品增加预先磁选工艺,预先磁选后获得磁选精矿经过磨矿选铁,尾矿浮选选铜试验表明,较直接浮选可获得更高回收率的铜精矿。原矿经磨矿至-0.076 mm占65%,在磁场强度为716.56k A/m时预先磁选后获得磁选精矿经过再磨选铁,预选尾矿和弱磁选尾矿混合后浮选选铜试验,可获得产率为4.53%、铜含量为18.86%,铜回收率为90.87%的铜精矿。相对原矿磨矿直接浮选指标铜精矿产率提高0.03个百分点,铜品位提高0.50个百分点,铜回收率提高3.94个百分点。  相似文献   

11.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

12.
龚哲彦 《现代矿业》2020,36(9):110-113
针对某地磁铁矿石含硫(339%)较高,磁选容易造成铁精矿含硫超标的问题,进行降硫选铁及综合回收伴生有价组分的选矿试验研究,最终推荐浮选—磁选联合工艺流程,获得了铜品位1330%、金品位425 g/t、银品位107 g/t,铜回收率5125%的合格铜精矿;硫品位2960%、硫回收率7974%的合格硫精矿;全铁品位6705%、硫含量016%、全铁回收率6200%的合格铁精矿;该工艺流程合理,浮选除硫可有效地降低铁精矿中的硫含量,并且综合回收了铜和硫,提高了该矿山的经济价值。  相似文献   

13.
西藏某斑岩型铜矿中含铜1.10%~1.30%、含金0.04~0.08g/t,矿石中铜矿物以辉铜矿为主、黄铜矿次之,铜矿物嵌布粒度细、且嵌布关系复杂,金主要与铜矿物和黄铁矿伴生,原有工艺铜精矿中的金难以富集到1g/t以上,且铜回收率偏低。为高效综合回收矿石中的铜金资源,开发了低碱条件下"铜硫部分混合浮选"新工艺,并以新型捕收剂ZH-01为铜硫混选的捕收剂,铜硫混选粗精矿经一次精选后,获得合格的铜精矿。实验室小型闭路试验结果表明,在磨矿细度-74μm含量占70%、原矿含铜1.21%、含金0.06g/t的条件下,获得了含铜35.27%、铜回收率94.12%,含金1.11g/t、金回收率56.23%的铜精矿。与现场工艺相比,新工艺不仅提高了铜的回收率,伴生金也得到了综合回收,实现了矿石中铜金的高效综合回收。  相似文献   

14.
秘鲁某选铁尾矿中铜品位0.83%,铁品位24.04%,同时伴生一定的金、银,具有较高的综合回收价值.由于该尾矿的脱硫泡沫中的硫被活化,受铜矿物中次生铜离子对硫的活化作用以及海水中各种离子对铜浮选的干扰,使得选铁尾矿的回收具有一定的难度.针对上述问题,在矿石工艺矿物学研究的基础上,通过工艺流程探索,采用优先选铜-粗精矿再...  相似文献   

15.
云南某含银高硫铜矿,矿石中矿物组成较为复杂,目的矿物硫化铜矿物、硫化铁矿物嵌布粒度不均匀且多数较细,银载体矿物分散。在矿石性质研究的基础上进行了选别流程对比实验研究。结果表明,采用优先浮选获得了铜品位21.60%、银品位602.84 g/t及铜回收率89.30%、银回收率54.39%的铜精矿,硫品位45.60%及硫回收率89.79%的硫精矿;采用混合浮选获得了铜品位21.24%、银品位598.42 g/t及铜回收87.38%、银回收率54.01%的铜精矿,硫品位46.38%及硫回收率87.92%的硫精矿。相对于混合浮选流程,在铜精矿中银回收率相近的情况下,优先浮选流程更充分的回收了矿石中的铜、硫,且流程稳定可靠及适合生产应用,可作为选矿工艺技术依据。  相似文献   

16.
以云南某铜金多金属矿为研究对象,探索了金在与其伴生的硫化矿、磁铁矿混合体系中的选矿特性及载体矿物对其选矿指标的影响。依据金在该矿石中的赋存状态、嵌布特征及其载体矿物的多样性等特点,采用了优先选铜再选硫,然后磁选铁矿物的工艺流程。通过精细化调控工艺参数,在最佳的综合条件下,获得的铜精矿铜品位为18.63%、含金63.24g/t,铜回收率为88.67%,金在铜精矿中的分布率为67.06%;硫精矿硫品位为47.86%、含金2.41g/t,硫回收率为86.16%,金在硫精矿中的分布率为15.08%;铁精矿铁品位为59.55%、含金1.20g/t,铁回收率为38.22%,金在铁精矿中的分布率为10.51%,为技术经济指标的提升和工艺改进提供了理论依据。  相似文献   

17.
澳大利亚某低品位铜金矿中铜以黄铜矿形式存在,金大部分以单体自然金形式存在,赋存于硫化物及脉石粒间,部分以不可见金的形式被黄铁矿包裹。黄铜矿和黄铁矿嵌布粒度较细,平均粒度0.03 mm。试验采用混合浮选—铜硫分离工艺,获得铜、金品位分别为19.02%和13.99 g/t,铜、金回收率分别为73.00%和49.29%的铜精矿;硫精矿经再磨后利用绿金浸出剂浸金,获得对原矿金浸出率14.92%,金总回收率64.21%,浸渣硫品位30.23%,可作为硫精矿销售。   相似文献   

18.
为获得高品质的银铅精矿,对某高硫银铅锌多金属矿石分别进行异步浮选—粗精矿全部再磨浮选、异步快速浮选—中矿集中再磨浮选和分段分速异步浮选—粗精矿部分再磨浮选试验。试验结果表明:在磨矿细度为-0.074 mm 70%的情况下,分段分速异步浮选—粗精矿部分再磨浮选优于其余两种工艺,浮选流程获得的银铅精矿银品位621 g/t、银回收率54.18%,铜品位0.84%、铜回收率34.62%,铅品位62.78%、铅回收率89.42%,锌品位6.45%、锌回收率5.83%。  相似文献   

19.
甘永刚 《金属矿山》2013,42(11):69-73
福建某银铜多金属矿石由于铜品位较低,现场采用单一浮银工艺获得银精矿,金、铜仅作为伴生元素回收。由于铜在氰化浸金、银过程中的消极作用较大,因此铜的计价系数仅为01,且金、银的计价系数也受到影响。为提高矿山和湿法冶金企业的经济效益,为工艺完善与改造提供依据,对该矿石进行了部分优先快速浮铜-金银混合浮选研究。结果表明:在现场磨矿细度下,采用1粗2精快速选铜、1粗1扫2精选银工艺处理该矿石,取得的铜精矿铜、金、银品位分别为2203%、3221 g/t、2 36000 g/t,回收率分别为4651%、3221%、1254%,银精矿铜、金、银品位分别为149%、412 g/t、1 23600 g/t,回收率分别为4023%、5269%、8401%,金、银、铜的经济价值均得到显著提高。  相似文献   

20.
为综合回收某复杂多金属浮选尾矿中伴生的金银铁,分别开展了磁选、全泥氰化浸出、反浮选试验研究。结果表明,优先采用强磁预选抛尾的方法对含铁矿物进行富集,再采用先回收金银后选铁的方案较好。矿石在“强磁抛尾-全泥氰化浸出-弱磁选铁-强磁选铁,磁铁精矿反浮选脱硫”的联合工艺下,金、银浸出率分别达85.32%和72.13%,并获得TFe品位为62.01%,TFe回收率为11.04%,含硫量为0.25%磁铁精矿,及TFe品位为45.30%,TFe回收率为18.54%铁精矿产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号