首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four cyclotriphosphazene‐based benzoxazine monomers (I, II, III, and IV) with relatively high molecular weight were synthesized by a nucleophilic substitution reaction, and their chemical structures were confirmed by 1H‐NMR and 31P‐NMR. A new term, oxazine value (OV, similar to epoxy value), was first proposed to explain the structure–property relationship of the cured polymers. The polymerization behaviors of the four monomers were studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. The maximum exothermic peaks of the four monomers are in the range 244–248 °C. All monomers possess a wide processing window despite their high molecular weight. The thermal stability, glass‐transition temperature (Tg), and mechanical properties of each cured polymer were studied by thermogravimetric analysis and dynamic mechanical thermal analysis. The char yield at 850 °C, Tg, and storage moduli of PIV (polybenzoxazine obtained from monomer IV) are 60.0%, 218 °C, and 9.0 GPa, respectively. The surface property and humidity absorption character of the cured polybenzoxazines were also studied. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44453.  相似文献   

2.
The synthesis of side chain cholesteric liquid‐crystalline polymers containing both 4‐cholesteryl‐4'‐acryloyloxybenzoate (MI) and 4‐methoxyphenyl‐4'‐acryloyloxybenzoate (MII) mesogenic side groups is described. The chemical structures of the obtained monomers and polymers are confirmed by Fourier transform infrared (FTIR) spectroscopy. The phase behavior and optical properties of the synthesized monomers and polymers were investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA). The homopolymer IP reveals a cholesteric phase and VIIP displays a nematic phase. The copolymers IIP–VIP exhibit, respectively, cholesteric oily‐streak texture and focal‐conic texture. The fixation of the helical pitch and oily‐streak texture of the cholesteric phase is achieved by quenching, and polymer films with different reflection colors are obtained. The experimental results demonstrate that the glass transition temperature (Tg) and the melting temperature (Tm) of the copolymers IIP–VIP decrease, whereas the isotropization temperature (Ti) and the mesomorphic temperature range (ΔT) increase with increasing content of mesogenic MII units. TGA results indicate that the temperatures at which 5% mass loss occurred (T5wt%) of all copolymers are >245°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1936–1941, 2003  相似文献   

3.
Chain‐linked lactic acid polymers with high molecular weight were synthesized by two‐step polymerization method, including polycondensation and chain extending reactions. The effects of chain extender toluene diisocyanate (TDI) on the chain‐linked lactic acid polymers were studied. The polymers obtained were characterized by gel permeation chromatography, fourier transform infrared spectroscopy, 1H NMR, and differential scanning calorimeter. Reactions between 1,4‐butanediol and lactic acid oligomers led to hydroxyl‐terminated prepolymer, which provided significant increase of molecular weight in the chain extending reaction. In addition, the glass transition temperature (Tg) and the melting temperature (Tm) were increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1045–1049, 2006  相似文献   

4.
BACKGROUND: This investigation evaluates the effectiveness of initiator adducts for living and controlled polymerization of methacrylates, crosslinking of dimethacrylates and thermal stabilities of the resulting polymers. Adducts of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy with benzoyl peroxide and with azobisisobutyronitrile were prepared and evaluated as stabilized unimolecular initiators for the free radical polymerization of methacrylate monomers using sulfuric acid as catalyst. The monomers used were methyl methacrylate, triethylene glycol dimethacrylate (TEGDMA) and ethoxylated bisphenol A dimethacrylate (EBPADMA). RESULTS: Successful polymerization was achieved at 70 and 130 °C with reaction times ranging from 45 min to 120 h. The dispersity (D) of poly(methyl methacrylate) (PMMA) was 1.09–1.28. The livingness and extent of control over polymerization were confirmed with plots of Mn evolution as a function of monomer conversion and of the first‐order kinetics. The glass transition temperature (Tg) for PMMA was 123–128 °C. The degradation temperature (Td) for PMMA was 350–410 °C. Td for poly(TEGMA) was 250–310 °C and for poly(EBPADMA) was 320–390 °C. CONCLUSION: The initiators are suitable for free radical living and controlled polymerization of methacrylates and dimethacrylates under mild thermal and acid‐catalyzed conditions, yielding medium to high molecular weight polymers with low dispersity, high crosslinking and good thermal stability. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
Two phosphonate‐containing bismaleimide (BMI) [(4,4′‐bismaleimidophenyl)phosphonate] monomers with different melting temperatures and similar curing temperatures were synthesized by reacting N‐hydroxyphenylmaleimide with two kinds of dichloride‐terminated phosphonic monomers. The BMI monomers synthesized were identified with 1H‐, 13C‐, and 31P‐nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The phosphonate‐containing BMI monomers react with a free‐radical initiator to prepare phosphonate‐containing BMI polymers and also with various aromatic diamines to prepare a series of polyaspartimides as reactive flame retardants. The polymerization degrees of polyaspartimides depend on the alkalinity and nucleophility of diamines as chain extenders. Differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) were used to study the thermal properties of the phosphonate‐containing BMI resins such as the melting temperature, curing temperature, glass transition temperature (Tg), and thermal resistance. All the phosphonate‐containing BMI resins, except the BMI polymers, have a Tg in the range of 210–256°C and show 5% weight loss temperatures (T5%) of 329–434 and 310–388°C in air and nitrogen atmospheres, respectively. The higher heat resistance of cured BMI resin relative to the BMI polymer is due to its higher crosslinking density. Since the recrosslinking reactions of BMI polymers and polyaspartimides occur more easily in an oxidation environment, their thermal stabilities in air are higher than are those in nitrogen gas. In addition, the thermal decomposition properties of polyaspartimides depend on the structures and compositions of both the diamine segments and the BMI segments. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1919–1933, 2002  相似文献   

6.

In this work, four novel different alkyl lactate methacrylate monomers were synthesized through azeotropic esterification method by reacting methyl, ethyl, propyl and butyl lactates with methacrylic acid. The prepared monomers were polymerized through solution polymerization technique and both monomers and polymers were analyzed by FTIR, 1H NMR and 13C NMR spectroscopy techniques to elucidate the structure and to confirm their formation. Increasing the number of methylene units in alkyl lactate side chain decreases the glass transition temperature (Tg) of the polymers. Average molecular interchain spacing (〈R〉) of polymers was obtained from the wide-angle X-ray diffraction measurement and the values ranged from 6.26 to 7.18 Å based on the length of alkyl lactate group. The prepared polymers showed hygroscopic property and their moisture absorption was in the range of 10–24% (w/w) depending upon the length of alkyl lactate moiety, relative humidity and time. These polymers have the potential for hydrogel applications owing to their increased moisture absorption capacity. Both polymethyl and propyl lactate methacrylate showed two distinct and prominent thermal degradations whereas polyethyl and butyl lactate methacrylates showed only a single distinct and prominent thermal degradation step. An interesting result of as-synthesized polymers showed odd–even chain length effect in the properties of 〈R〉, moisture uptake and thermal stability.

  相似文献   

7.
Partially bio-based poly(thioether-ester)s were obtained in high conversion from thiol-ene photopolymerization of fatty dienes with dithiols utilizing mild, solventless reaction conditions. Fatty dienes were synthesized by esterification of 9-decenoic acid, a terminally unsaturated medium-chain fatty acid that can be obtained from ethenolysis of oleic acid, with ethylene glycol and 9-decen-1-ol to yield bio-based dienoic monomers amenable to subsequent thiol-ene polymerization. Polycondensation with 1,2-ethanedithiol (EDT) and 1,3-propanedithiol (PDT) gave a series of semicrystalline poly(thioether-ester)s with degrees of polymerization that ranged from 29 to 85, polydispersity indices between 2.81 and 4.38, and glass transitions from −36.8 to −25.7 °C. The polymers were elastic at room temperature, with EDT-linked materials exhibiting greater elasticity than the corresponding PDT-linked polymers. All polymers were thermally stable below 320 °C, with 10% mass loss (T10) occurring above 338 °C. Enthalpies of fusion increased with higher relative crystallinity and were greater than the corresponding enthalpies of crystallization. The polymers were soluble in nonpolar solvents such as chloroform and THF but resisted dissolution in more polar solvents with dielectric constants above 10. Furthermore, the polymers were susceptible to acidic hydrolysis but resisted basic hydrolysis at room temperature.  相似文献   

8.
A kind of novel poly(phenylene sulfide)s (PPSs) containing a chromophore group were synthesized by the reaction of dihalogenated monomer and sodium sulfide (Na2S.xH2O) via nucleophilic substitution polymerization under high pressure. The polymers were characterized by Fourier transform infrared spectroscopy, ultraviolet spectroscopy, fluorescence spectroscopy, XRD, DSC, TGA, mechanical testing and dissolvability experiments. The intrinsic viscosity of the polymers obtained with optimum synthesis conditions was 0.22 ? 0.38 dl g?1 (measured in 1‐chloronaphthalene at 208 °C). These polymers were found to have good thermal performance with a glass transition temperature (Tg) of 90.5 ? 94.6 °C and initial degradation temperature (Td) of 475–489 °C, showing improved thermal properties compared with homo‐PPS. At the same time the resultant resins had a high tensile strength of 67.5 ? 74.1 MPa and compressive strength of 70.7 ? 85.4 MPa. Additionally, these polymers exhibited a weak UV ? visible reflectivity minimum at 450–570 nm, and the fluorescence spectra of the polymers showed maximum emission around nearly 370 nm. Also they showed excellent chemical resistance and another special property ? bright shiny colors changed into different colors in acid solution. © 2014 Society of Chemical Industry  相似文献   

9.
The rich chemistry of polybenzoxazines allows a wide range of molecular structure design by using appropriate starting materials. A new class of polybenzoxazines has been developed from benzoxazine monomers containing pendent long aliphatic chains. The monomers have been synthesized by the reaction of phenol or bisphenol A with two different long‐chain aliphatic amines. The chemical structure of the monomers was confirmed by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The polymerization behavior of the monomers studied by differential scanning calorimetry shows exothermic peaks due to the ring‐opening polymerization of benzoxazine monomers centered at 247–255 °C. Dynamic mechanical analysis indicated that the glass transition temperatures Tg were in the range 81–92 °C. The thermal stability of the polymers was also examined by thermogravimetric analysis, demonstrating that the weight loss temperatures decreased in comparison with that of traditional polybenzoxazine. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
The electrochemical behaviour of three fluoro‐substituted aniline monomers, 2‐fluoroaniline (2FAN), 3‐fluoroaniline (3FAN) and 4‐fluoroaniline (4FAN), was investigated in aqueous acidic and organic media by means of cyclic voltammetry (CV) studies. Constant potential electrolysis (CPE) of the monomers in acetonitrile–water mixture (1:1 by volume) using NaClO4 as supporting electrolyte yielded soluble polymers. The mechanism of electrochemical polymerization was investigated using in situ electron spin resonance (ESR) and in situ UV–VIS spectroscopic techniques for one of the monomers (4FAN). Both CV and in situ UV–VIS measurements indicated that the polymers obtained are in the emeraldine base form. In situ ESR studies indicated that electrochemical polymerization involves a radical‐cation as an intermediate. Characterization of polymer products have been carried out using FTIR and NMR spectroscopic techniques, and thermal behaviour was studied using differential scanning calorimetry (DSC). It was found that conductivity can be imparted to as‐synthesized polyfluoroanilines via iodine doping. © 2002 Society of Chemical Industry  相似文献   

11.
Copolymers of linear and aromatic polysulfide blocks are synthesized using interfacial polymerization of dichloro-xylene-based aromatic and ethylene-dichloride-based non-aromatic organic monomers. Synthesized copolymers consist of poly(ethylene sulfide) as well as ploy (xylene sulfide) blocks. Fascinating properties of linear and aromatic polysulfide species are gathered in the structure of synthesized polysulfide copolymers. Ethylene dichloride and α,α′-dichloro-p-xylene are used as the non-aromatic and aromatic organic monomers, respectively. To investigate the influences of sulfur contents in the backbone of the polymer on the thermal stability of synthesized copolymers, poly(ethylene-xylene disulfide) (PEXDS), poly(ethylene-xylene trisulfide) (PEXTRS) and poly(ethylene-xylene tetrasulfide) (PEXTS) copolymers are synthesized using, respectively, sodium disulfide, sodium trisulfide and sodium tetrasulfide, as aqueous monomers. Compared to both linear and nonlinear homopolymers, synthesized copolymers exhibit improved thermal stability. Moreover, the thermal degradation temperatures of synthesized copolymers improve by decreasing the number of sulfur atoms in the backbone of copolymers. These results reveal that thermal degradation of polysulfide copolymers can be tailored by controlling the polysulfide chain’s sulfur contents. Structural characteristics of synthesized polysulfide copolymers are also investigated using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and X-ray diffraction analysis.  相似文献   

12.
The characterization of poly(dihalophenylene oxide)s synthesized by solid-state thermal decomposition of manganese phenolate complexes with tetramethylethylenediamine (TMEN) ligand is reported. The complexes prepared with 2,4,6-trichlorophenol (TCP) and 2,4,6-tribromophenol (TBP) have been characterized by FTIR spectroscopy, elemental analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The dependence of the polymerization yield on temperature and decomposition time of the complexes has been investigated. Maximum polymerization yield is obtained at 220°C and 48 h. The polymers synthesized from the complexes have been characterized by 1H-NMR and FTIR spectroscopy, DSC, and viscometric measurements. All polymers have a branched structure, a high Tg and low intrinsic viscosity. © 1999 Society of Chemical Industry  相似文献   

13.
Poly(lactic acid) was synthesized from cheap, commercially available aqueous lactic acid (85–90% w/w) with ε‐caprolactam and SnCl2·2H2O as catalysts in the absence of organic solvents. As a result, poly(lactic acid) with a molecular weight of 50,000 and a yield of 87–94% was prepared in 16 h. The new procedure is quite simple and cheap. The starting material is renewable aqueous lactic acid. The effects of the amount of the catalyst, the reaction temperature, and the reaction time on the polymerization were investigated in detail. The polymers obtained by ε‐caprolactam and SnCl2·2H2O were characterized with gel permeation chromatography, infrared, and nuclear magnetic resonance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Three soluble, thermally stable azomethine polymers were synthesized by the oxidative polycondensation of azomethine bisphenols using NaOCl as an oxidant in aqueous alkaline medium. The azomethine bisphenol monomers, 4,4′-oxybis[N-(2-hydroxy-3-methoxybenzilidine)aniline], 4,4′-oxybis[N-(2-hydroxy-5-bromobenzilidine)aniline] and 4,4′-oxybis[N-(2-hydroxynaphthalidine) aniline] were synthesized by the condensation of 4,4′-oxydianiline with three aromatic aldehydes. The structures of the monomers and polymers were confirmed by Fourier Transform infrared spectroscopy, UV–visible, 1H-NMR and 13C-NMR spectroscopic techniques. Morphology of the synthesized polymers was characterized using scanning electron microscope. The thermal stability of the polymers is evidenced by high carbines residue obtained in TGA. Fluorescence spectra showed that the emission maxima centred in the region 420–460 nm for all the compounds with large stokes shift values (?λST). Electrical conductivity of iodine-doped polymers was measured by four-point probe technique. The synthesized polymers have shown good electrical conductivity on iodine doping, and it increases with the increase in iodine vapour contact time. The self-extinguishing property of the synthesized polymers was studied by the calculation of the limiting oxygen index values with van Krevelen’s equation.  相似文献   

15.
BACKGROUND: Nitroxide adducts 1,1‐ditertbutyl‐1‐(1‐methyl‐1‐cyanoethoxy)‐amine (AIBN/DBN), 1,1‐ditertbutyl‐1‐(benzoylperoxy)‐amine (BPO/DBN) and 2,2,6,6,‐tetramethyl‐4‐oxo‐1‐(1‐methyl‐1‐cyanoethoxy)‐piperidine (AIBN/4‐OXO‐TEMPO) were prepared and evaluated as stabilized unimolecular initiators for controlled radical polymerization of methacrylate monomers using sulfuric acid as an accelerating additive. Their effectiveness was evaluated from polymerization rates, molecular weight control and dispersity (D) of the polymers. Thermal stabilities of the polymers were also examined. The monomers used were methyl methacrylate, triethylene glycol dimethacrylate (TEGDMA) and ethoxylated bisphenol A dimethacrylate (EBPADMA). RESULTS: Polymerization was accomplished at 70 and 130 °C in 5 min to 144 h. The value of D of poly(methyl methacrylate) (PMMA) was 1.05–1.22. The glass transition temperature (Tg) for PMMA was 122–127 °C. The activity of the chain ends was established by chain extension and controlled polymerization was established by plotting Mn versus monomer conversion. First‐order kinetics in monomer consumption was established and an electron paramagnetic resonance study was conducted. Decomposition temperature (Td) for PMMA was 360–380 °C, for poly(TEGDMA) was 300–380 °C and for poly(EBPADMA) was 360–440 °C. Photoinitiation without additive yielded no polymer. Thermal initiation by AIBN/4‐OXO‐TEMPO was the fastest. CONCLUSIONS: The initiators are applicable in low‐temperature additive‐enhanced controlled polymerization of methacylates and dimethacrylates, producing polymers with excellent attributes and a low value of D. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Exfoliated polystyrene/organo-modified montmorillonite nanocomposite was synthesized through in situ free radical polymerization by dispersing a modified reactive organophilic montmorillonite layered silicate in styrene monomers. The original montmorillonite (MMT) was modified by a novel cationic surfactant. A cationic initiator, consisting of a quaternary ammonium salt moiety, α-phenyl chloro acetyl chloride moiety, and 9-decen-1-ol moiety, was intercalated into the interlayer spacing of the layered silicate. Modified MMT clays were then dispersed in styrene monomers and subsequently polymerized by a free-radical in situ polymerization reaction to yield polystyrene/montmorillonite nanocomposite. The structure of obtained modifier was investigated by proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared (FT-IR) spectroscopy. The exfoliating structure of nanocomposite was probed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Comparing with pure polystyrene, the nanocomposite showed much higher decomposition temperature and higher glass transition temperature (Tg).  相似文献   

17.

Abstract  

Poly(aryl imino sulfone)s (PAISs) as novel high-performance polymers have been obtained by the condensation polymerization of 4,4′-dibromodiphenyl sulfone with different primary aromatic diamines via Palladium-catalyzed aryl amination reaction. The influence of the halogen-containing monomers, solvent, concentration, and temperature on the polycondensation reaction was investigated. The structure of polymers synthesized was characterized by means of FT–IR, NMR spectroscopy, and elemental analysis, the results showed an agreement with the proposed structure. Differential scanning calorimetry and thermal analysis measurements showed that polymers possessed high glass transition temperature (T g > 145 °C) and good thermal stability with high decomposition temperatures (T D > 450 °C). These novel polymers also exhibited good mechanical behaviors and good solubility.  相似文献   

18.
The synthesis of chiral side‐chain liquid‐crystalline polysiloxanes containing both cholesteryl undecylenate (MI) and 4‐allyloxy‐benzoyl‐4‐(S‐2‐ethylhexanoyl) p‐benzenediol bisate (MII) mesogenic side groups was examined. The chemical structures of the obtained monomers and polymers were confirmed with Fourier transform infrared spectroscopy or 1H‐NMR techniques. The mesomorphic properties and phase behavior of the synthesized monomers and polymers were investigated with polarizing optical microscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). Copolymers IIP–IVP revealed a smectic‐A phase, and VP and VIP revealed a smectic‐A phase and a cholesteric phase. The experimental results demonstrated that the glass‐transition temperature, the clearing‐point temperature, and the mesomorphic temperature range of IIP–VIP increased with an increase in the concentration of mesogenic MI units. TGA showed that the temperatures at which 5% mass losses occurred were greater than 300°C for all the polymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2670–2676, 2002  相似文献   

19.
In this study, polymethacrylate polymers were synthesized by free‐radical polymerization for use as pour point depressants in lubricant oil, and their low‐temperature properties were investigated. Four methacrylate monomers were synthesized by the esterification of methyl methacrylate (MMA) with four kinds of fatty alcohols. The purification step was performed to prepare the pure monomers. Two polymerization experiments were carried out with four kinds of methacrylate monomers obtained previously and MMA. Copolymers, which were made from one kind of monomer and MMA, and terpolymers, which were made from two kinds of monomers and MMA, were prepared. The molecular structures of the synthesized methacrylate monomers and polymethacrylate polymers were verified by 1H‐NMR, and the molecular weight data were obtained by gel permeation chromatography. The pour points of the base oils containing 0.1 wt % polymethacrylate polymers were measured according to ASTM D 97‐93. The pour points of most base oils containing each polymer decreased compared to that of the pure base oil. Particularly, poly(dodecyl methacrylate‐co‐hexadecyl methacrylate‐co‐methyl methacrylate), made of dodecyl methacrylate, hexadecyl methacrylate, and MMA at a molar ratio of 3.5 : 3.5 : 3, showed the best low‐temperature properties. This terpolymer dropped the pour point of the base oil by as much as 23°C, and its yield was 93.5%. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Two novel bismaleimide (BMI) monomers containing silicon atom in the structure, i.e., bis[4-(4-maleimidophenylcarbonyloxy)phenyl]dimethylsilane (BMI-SiE1) and bis[4-(4-maleimidophenyloxycarbonyl)phenyl]dimethylsilane (BMI-SiE2), were designed, synthesized, and polymerized with and without the use of diamine as comonomers to yield novel silicon-containing BMI resins. Both monomers obtained are readily soluble in organic solvents, such as chloroform and N, N-dimethylformamide. Differential scanning calorimetry and thermogravimetric analysis investigation of these two monomers indicated a high polymerization temperature (Tp > 240°C) and a good thermal and thermo-oxidative stability of cured BMI resins. The onset temperature for 5% weight loss was found to be above 450°C in nitrogen and above 400°C in the air. Polymerization of BMI-SiE1 and BMI-SiE2 with 4,4′-diaminodiphenylether (DPE) yielded a series of polyaspartimides that had good solubility and could be thermally cured at 250°C. TGA investigations of the cured diamine-modified BMI resins showed onset of degradation temperatures (Tds) in the range of 344–360°C in nitrogen and 332–360°C in the air. Composites based on the cured diamine-modified BMI resins and glass cloth were prepared and characterized for their dynamic mechanical properties. All the composites showed high glass transition temperatures (e.g., >190°C) and high bending modulus in the range of 1000–2700 MPa. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号