首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of copolymers and glass fiber composites were successfully prepared from 2,2‐bis [4‐(3,4‐dicyanophenoxy) phenyl] propane (BAPh), epoxy resins E‐44 (EP), and polyarylene ether nitriles (PEN) with 4,4′‐diaminodiphenyl sulfone as curing additive. The gelation time was shortened from 25 min to 4 min when PEN content was 0 wt % and 15 wt %, respectively. PEN could accelerate the crosslinking reaction between the phthalonitrile and epoxy. The initial decomposition temperatures (Ti) of BAPh/EP copolymers and glass fiber composites were all more than 350°C in nitrogen. The Tg of 15 wt % PEN glass fiber composites increased by 21.2°C compared with that of in comparison with BAPh/EP glass fiber composite. The flexural strength of the copolymers and glass fiber composites reached 119.8 MPa and 698.5 MPa which increased by 16.6 MPa and 127.3 MPa in comparison with BAPh/EP composite, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Highly filled graphite polybenzoxazine composites as bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC) are developed. At the maximum graphite content of 80 wt % (68 vol %), storage modulus was increased from 5.9 GPa of the neat polybenzoxazine matrix to 23 GPa in the composite. Glass transition temperatures (Tg) of the composites were ranging from 176°C to 195°C and the values substantially increased with increasing the graphite contents. Thermal conductivity as high as 10.2 W/mK and electrical conductivity of 245 S cm?1 were obtained in the graphite filled polybenzoxazine at its maximum graphite loading. The obtained properties of the graphite filled polybenzoxazine composites exhibit most values exceed the United States department of energy requirements for PEMFC applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3909–3918, 2013  相似文献   

3.
A series all‐aromatic poly(esterimide)s with different molar ratios of N‐(3′‐hydroxyphenyl)‐trimellitimide (IM) and 4‐hydroxybenzoic acid (HBA) (IM/HBA = 0.3/0.7 and 0.7/0.3) was prepared with the aim to design flexible high Tg films. Melt‐pressed films, either from high molecular weight polymer or cured phenylethynyl precursor oligomers, exhibit Tgs in the range of 200 °C to 242 °C and are brittle. After a thermal stretching procedure, the films became remarkably flexible and very easy to handle. In addition, the thermally stretched 3‐IM/7‐HBA and 7‐IM/3‐HBA films show tensile strengths of 108 MPa and 169 MPa, respectively. Thermal treatment increased the Tg of 3‐IM/7‐HBA from 205 °C to 248 °C, whereas the Tg of 7‐IM/3‐HBA increased from 230 °C to 260 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 133, 44774.  相似文献   

4.
Polyethylene glycol (PEG)/quartz (denoted as BP/Q) composites have been investigated as candidates of phase change materials (PCMs) due to their thermomechanical properties around the glass transition temperature as well as thermal properties between 30 and 600 °C. Quartz (q-SiO2) powders were extracted from local sand in Tanah Laut, Pelaihari, South Kalimantan, Indonesia. The composites were prepared by dispersing q-SiO2 powders in the PEG matrix followed by the wet mixing process. The thermal properties of the composites were characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), while the thermomechanical properties were examined using a dynamic mechanical analyzer (DMA) in a three-point bending mode around the PEG glass transition temperature range (−100–50°C). The morphology and interface bonding were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From the DSC measurement, the endothermic peak of the composites showed a shift of approximately 7–12 °C toward higher temperatures than that of the pure polymer. The melting enthalpy values (ΔHm) of the BP/Q composites covered the required PCM application range, that is, between 139 and 182 J/g. The TGA of the composites showed that thermal degradation occurs in the range of 250–450 °C. We found that solid–solid PCMs (ssPCMs) were successfully fabricated with the addition of 10 and 20 wt% q-SiO2. From DMA characterization, the BP/Q 20 wt% composite exhibited the maximum E’ and the minimum energy dissipation (E”). Its E’ value was approximately 250 MPa more than that of the pure PEG. The glass transition (Tg) temperatures of PEG and BP/Q composites (5, 10, and 20 wt%) were around −24.5, −19.1, −17.1, and − 5.3 °C, respectively. In addition, the E” and tan δ values decreased with q-SiO2 filler content. Furthermore, the Cole-Cole plots of the BP/Q composites revealed a better interfacial bonding between the q-SiO2 and the PEG matrix in the composites with higher silica content. A compact morphology was shown by the BP/Q 20 wt% composite due to high silica concentration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48130.  相似文献   

5.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

6.
In order to better understand the design rules of epoxy–phenol thermosets we will report on the chemistry and (thermo)mechanical properties of cured epoxy–phenol thermoset films. Ortho-, meta- and para-isomers of dihydroxybenzene (DHB) were reacted with the diglycidyl ether of bisphenol A (DGEBA) in the presence of an acid catalyst or triphenylphosphine (PPh3). The glass transition temperatures (Tg) of the cross-linked films decreases in the order of meta- (Tg = 115°C) > ortho- (Tg = 102°C) > para-DHB (Tg = 96°C) as measured by differential scanning calorimetry. Uniaxial tensile testing of cross-linked films showed excellent stress–strain behavior. The average ultimate strength values ranged from 65 to 82 MPa and the average values of the strain-at-break ranged from 4.8% to 6.9% at 25°C for all cross-linked films. When a PPh3 was used, the network properties were profoundly different. The base catalyzed thermoset of DGEBA and meta-DHB shows a Tg of 85°C, which is 30°C lower than the Tg of the acid-catalyzed analog. Tensile films appear to be more ductile, as they exhibit a strain-at-break of 20%. The results of this study confirm that simple dihydroxybenzene hardeners can be used to prepare cross-linked films with excellent thermomechanical properties.  相似文献   

7.
Polymer blends of polybenzoxazine (PBA‐a) and polycaprolactone (PCL) of different molecular weights (Mn = 10,000, 45,000, and 80,000 Da) were prepared at various PBA‐a/PCL mass ratios and their properties were characterized. The results from dynamic mechanical analyzer (DMA) revealed two glass transition temperatures implying phase separation of the two polymers in the studied range of the PCL contents. Moreover, a synergistic behavior in glass transition temperature (Tg) was evidently observed in these blends with a maximum Tg value of 281°C compared with the Tg value of 169°C of the PBA‐a and about ?50°C of the PCL used. The blends with higher Mn of PCL tended to provide greater Tg value than those with lower Mn of PCL. The modulus and hardness values of PBA‐a were decreased while the elongation at break and area under the stress?strain curve were increased with an increase of the content and Mn of PCL, suggesting an enhancement of toughness of the PBA‐a. Scanning electron micrographs (SEM) of the sample fracture surface are also used to confirm the improvement in toughness of the blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41915.  相似文献   

8.
Poly(acrylic acid)-silica composites have been prepared by two different methods and thermally characterized. The glass transition temperature (Tg) of the PAA-SiO2 system prepared by mixture method was found to be 120°C irrespective of the type and amounts of silica involved in this work. However, the Tg varied between 132°C and 113°C in the systems prepared by polymerization reaction depending upon the type of silica and percentage conversion. The composites prepared by mixture and polymerization method have been investigated by using thermogravimetry (TGA) to follow the kinetics of anhydride formation and thermal degradation reactions. The activation energy of thermal anhydride formation and thermal degradation reaction was not found to change very much with ratio of PAA-SiO2 when the composites were prepared by simple mixing. For the composites prepared by polymerization method the activation energy of anhydride formation and thermal degradation reaction were observed to change with percentage conversion. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 891–895, 1998  相似文献   

9.
N‐(4‐hydroxyphenyl)maleimide was melt‐blended with the glycidyl ether of bisphenol‐A and various mole percentages of 4, 4′‐(diaminodiphenylsulfone) bismaleimide. The cure behaviour of the resins was evaluated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The blends showed distinct reductions in the onset of cure (To) and peak exothermic (Texo) temperatures. The blends cured at low temperatures exhibited glass transition temperatures (Tgs) higher than the cure temperatures. The cured blends showed high moduli, glass transition temperatures in excess of 250 °C and good thermal stabilities up to 400 °C. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
In this paper, a series of graphitic carbon nitride (g-C3N4) was synthesized under different thermal oxidation etching temperatures and epoxy/g-C3N4 composites were prepared via solution blending. The morphology and structure of g-C3N4 were investigated by transmission electron microscope, X-ray diffraction (XRD), Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The tensile fracture morphology and structure of epoxy resin (EP) composites were demonstrated by scanning electron microscopy and XRD, respectively. Mechanical properties of EP composites were characterized by tensile testing, and the thermal performances were investigated by dynamic mechanical thermal analysis and thermal gravimetric analysis. The results revealed that the active groups on g-C3N4 sheets increased under thermal oxidation etching and the C to N ratio of g-C3N4 decreased from 0.94 to 0.76 with the increasing etching temperature. Noticeably, the tensile strength of EP composites was enhanced by 58% with the addition of C3N4-NS-500 and the thermal properties were also improved significantly, including T0.5 (the decomposition temperature at the mass loss of 50%) increased by 21.5 °C and glass transition temperature improved by 8 °C. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48598.  相似文献   

11.
In this study, polymer hybrid composites were synthesized by sol‐gel process. 3‐Amino‐propyltrimethoxysilane [APTMS)/γ‐Glycidoxypropyl trimethoxy‐silane (GPTMS); (4, 4′‐Methylene‐dianiline (DDM)] and 1,4‐Bis(trimethoxysilylethyl) benzene (BTB) were added to DGEBA type epoxy resin for anticipated to exhibit excellent thermal stability. Boron trifluoride monoethylamine (BF3MEA) was used as catalyst. The structure of nanocomposites was characterized by attenuated total reflectance (ATR) and solid‐state 29Si NMR which suggest EP‐APTMS‐BTB/EP‐GPTMS‐BTB possesses T3; T1–T0, and T1 structures when the BTB content was lower than 10 wt % and higher 20 wt %, respectively. BF3MEA was proved to be an effective catalyst for the sol‐gel reaction of APTMS, but it could not promote for GPTMS. From TEM microphotographs, EP‐APTMS‐BTB (10 wt %) possesses a dense inorganic structure (particle size around 5–15 nm) compare with the loose inorganic structure of EP‐GPTM‐/BTB (10 wt %). DSC, TGA were use to analyze the thermal properties of the nanocomposites and DMA was used to analyze the dynamic mechanical properties of hybrid composites. The Tgs of all nanocomposites decreased with the increasing BTB content. A system with BTB content lower than 10 wt % showed good dynamic mechanical property and thermal stability (Td5 increased from 336°C to 371°C, char yield increased from 27.4 to 30.2%). The structure of inorganic network affects the Td5 and dynamic mechanical properties of composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40984.  相似文献   

12.
N.G. McCrum 《Polymer》1984,25(3):309-317
The kinetics of the α relaxation of a crosslinked copolymer of acrylonitrile and butadiene (Tg = ?7°C) were studied in the temperature range (Tg + 17°C) down to (Tg ? 8°C). The techniques used were shear creep analysed by time-temperature (t-T) superposition and thermal sampling (TS) with correction procedures proposed by McCrum. In this range the kinetics do not follow the compensation rule, as had been proposed in the pioneering TS experiments by Zielinski, Swiderski and Kryszewski and by Lacabanne et al.. The McCrum correction removes a discrepancy between the pioneering TS experiments and the conclusions of classical t-T superposition experiments. The methods of TS and t-T superposition are compared. At low temperatures, below (Tg + 3°C), the TS method is superior: t-T superposition is unreliable due to lack of normalization and to the physical ageing perturbation. At temperatures from (Tg + 3°C) to (Tg + 11°C) t-T superposition is highly reliable since normalization is not required and there is no ageing. At temperatures above (Tg + 11°C) the precision of t-T superposition depends on the validity of the normalization procedure. It has yet to be determined whether or not the compensation rule applies at temperatures below (Tg ? 8°C): the method most likely to settle this important question is TS, mechanical or dielectric variant, with McCrum correction for the distribution of relaxation times.  相似文献   

13.
《国际聚合物材料杂志》2012,61(3-4):117-132
Abstract

The dynamic mechanical properties of ethylene vinyl acetate (EVA) rubber filled with different loadings of carbon black and at different degrees of crosslinking were studied over a wide range of temperatures (-150° to +200°C). The loss tangent (tan δ) versus temperature plots indicated presence of different transitions. The α-transition (or the glass-rubber transition) corresponding to the maximum in tan δ value, occurred at ?17°C, which is the principal glass-transition temperature (abbreviated as T g) of EVA rubber. The γ-transition occurred in the temperature region of ?125° to ?135°C, while the β-transition appeared as a shoulder in the temperature region of ?65° to ?75°C. Besides, there was also a high tempeature transition around +62°C which is known as liquid to liquid transition (T 1.1). Incorporation of carbon black filler did not cause any shift of T g, while the tan δ peak values at T g decreased sequentially with increase in filler loading. The γ- and β-relaxations were found to be insensitive to filler loading. The T 1.1 transition, however, was found to be suppressed by incorporation of carbon black filler particularly at high loading. Extent of crosslinking did not influence the T g But, the T 1.1 transition, which was prominent with the lightly crosslinked system was found to be suppressed at high level of crosslinking. Strain dependent dynamic mechanical properties under isothermal conditions showed that the secondary structure breakdown of carbon black filler under the effect of strain amplitude is influenced by the degree of crosslinking of EVA rubber.  相似文献   

14.
A series of rigid polyimide (PI) foams were synthesized via the reaction of a first solution with a second solution. The first solution was isocyanate‐terminated polyimide prepolymers; the second solution contained deionized water and surfactant. The effect of different water contents and isocyanate index on the structures and properties of rigid PI foams were investigated. The apparent density, hardness, compressive strength, and the 5% weight loss temperatures (T5%) decreased with the increase of water content. With the increase of isocyanate index, the apparent density and the T5% values decreased, whereas the glass transition temperatures (Tg) increased and the hardness, compressive strength first increased and then decreased. The rigid PI foams composed of closed‐cells were confirmed by scanning electron microscopy. The maximum compressive strength of rigid PI foams prepared was up to 1.31 MPa. Moreover, excellent thermal stability was presented with the T5% values were all above 360°C and the residual weights of the foams (Rw) were more than 50% at 800°C. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Many biopolymers and synthetic polymers composites were developed by different researchers for environmental protection and for cost reduction. One of these composites is polycaprolactone (PCL) and vital wheat gluten or wheat flour composites were prepared and compatibilized with polymeric diphenylmethane diisocyanate (pMDI) by blending and compression‐molding. PCL/pMDI blend exhibited glass transition (Tg) at ?67°C (0.20 J/g/°C) and vital gluten at 63°C (0.45 J/g/°C), whereas no Tg was recorded for wheat flour. Although Tg was unmistakable for either PCL or gluten, all composite exhibited one Tg, which is strong indication of interaction between PCL and the fillers. Several samples amongst the blended or compression‐molded composites exhibited no Tg signifying another confirmation of interaction. The ΔH of the endothermic (melting) and the exothermic (crystallization) for PCL was decreased as the percentage of gluten or flour increased, whereas the overall ΔH was higher for all composites compared to the theoretical value. The presence of pMDI appeared to strengthen the mechanical properties of the composites by mostly interacting with the filler (gluten or flour) and not as much with PCL. The FTIR analysis ruled out covalent interaction between PCL, pMDI, or the fillers but suggested the occurrence of physical interactions. Based on the data presented here and the data published earlier, the presence of pMDI did not change the nature of interaction between PCL and gluten, but it improved the mechanical properties of the composite. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Interpenetrating polymer network (IPN) hydrogels composed of polyallylamine and chitosan were synthesized by radical polymerization using 2,2‐dimethyl‐2‐ phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The IPNs thus obtained were characterized by using Fourier transform infrared (FT‐IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperatures of IPNs were observed with increasing chitosan content by DSC. DEA was employed to ascertain the glass transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tgs indicating the presence of phase separation in the IPN. The thermal decomposition of IPNs was investigated by TGA and appeared at near 270 °C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1956–1960, 2002  相似文献   

17.
The thermal behavior of poly(2‐hydroxyethyl methacrylate) [PHEMA] homopolymer and poly(2‐hydroxyethyl methacrylate‐co‐itaconic acid) [P(HEMA/IA)] copolymeric networks synthesized using a radiation‐induced polymerization technique was investigated by differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The glass‐transition temperature (Tg) of the PHEMA homopolymer was found to be 87°C. On the other hand, the Tg of the P(HEMA/IA) networks increased from 88°C to 117°C with an increasing amount of IA in the network system. The thermal degradation reaction mechanism of the P(HEMA/IA) networks was determined to be different from the PHEMA homopolymer, as confirmed by thermogravimetric analysis. It was observed that the initial thermal degradation temperature of these copolymeric networks increased from 271°C to 300°C with IA content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1602–1607, 2007  相似文献   

18.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Liquid oxidized poly(1,2‐butadiene) (LOPB) with multi epoxy groups is synthesized to modify diglycidyl end‐caped poly(bisphenol A‐co‐epichlorohydrin) (DGEBA) cured by 4,4′‐diaminodiphenyl sulfone (DDS). FTIR spectra shows that DGEBA and LOPB can be effectively cured by DDS, and the epoxide rubber particles are evenly distributed in the composites till their addition up to 20 wt % of DGEBA as seen from the scanning electron microscope (SEM). Their decomposition temperatures (Td) increase with the increase in LOPB addition at around 10 wt % of DGEBA while the Td for the composite containing 20 wt % LOPB of DGEBA is lower than that of the neat epoxy. The addition of LOPB improves their storage moduli and especially these values at temperatures higher above 150 °C; all the composites exhibit higher glass transition temperature (Tg) than that of the neat epoxy, and the maximum Tg reaches up to 255 °C for the composite containing 15 wt % LOPB of DGEBA. The incorporation of LOPB effectively decreases their dielectric constants and the composite with 10 wt % LOPB of DGEBA possesses the lowest one. The synergic improvements in their various properties are attributed to the networks formation via covalent linkage between the two phases in these reactive blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44689.  相似文献   

20.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号