首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铜陵有色某矿山硫矿物以黄铁矿和磁黄铁矿为主,其中黄铁矿可浮性较好,磁黄铁矿可浮性相对较差,在浮选过程中容易氧化、掉槽,且磁黄铁矿与脉石矿物可浮性相近,采用浮选工艺很难获得高品质的硫精矿。根据黄铁矿和磁黄铁矿可浮性的差异、及其磁黄铁具有弱磁性的性质特点,采用分步浮选工艺,优先回收可浮性较好的黄铁矿,中矿以“强磁+浮选”工艺回收可浮性相对较差的磁黄铁矿,实现了对黄铁矿和磁黄铁矿的综合回收。闭路试验指标为:以黄铁矿为主的“硫精矿1”含硫47.78%、含铁43.83%,硫回收率为57.11%;以磁黄铁矿为主的“硫精矿2”含硫36.40%、含铁55.60%,硫回收率为22.12%;总硫精矿含硫43.94%、含铁47.80%,“全硫+铁”品位为91.74%,硫回收率为79.23%。总硫精矿经烧酸后,硫酸烧渣中铁品位在65%以上,附加值大大提高,具有广泛的经济效益和社会效益。  相似文献   

2.
代献仁  王周和 《现代矿业》2020,36(1):152-155
铜陵有色某选矿厂硫矿物以黄铁矿和磁黄铁矿为主,现场硫粗精矿经再选后,硫精矿全硫加全铁含量难以达到90%的目标要求,硫精矿经烧酸后所得红粉铁品位低,附加值不高,严重影响企业经济效益。为了实现硫精矿的提质降杂,根据黄铁矿可浮性较好,磁黄铁矿可浮性较差且具有弱磁性等性质特点,在试验室采用分步浮选工艺,即优先回收可浮性较好的黄铁矿,浮尾强磁—浮选回收磁黄铁矿的流程,实现了对黄铁矿和磁黄铁矿的高效回收。为进一步验证分步浮选工艺流程的合理性,在现场分出一部分硫粗精矿矿浆进行了连选试验,连选试验获得的总硫精矿含硫46.31%,全硫加全铁含量为91.60%,硫作业回收率为80.28%;连选试验现场硫精矿含硫39.67%,全硫加全铁含量为80.52%,硫作业回收率为73.94%。连选试验所得硫精矿全硫加全铁含量较现场高11.08个百分点,硫回收率较现场高6.34个百分点。连选试验结果为现场硫粗精矿再选工艺改造提供了技术及理论依据。  相似文献   

3.
粤北某高硫铁难选铜矿石中铜矿物绝大部分为黄铜矿,含硫矿物主要为黄铁矿,其次为磁黄铁矿,脉石矿物主要为石英、正长石、白云母、透闪石、方解石、绿泥石,主要有回收价值的元素为铜、硫。原生硫化铜占总铜的87.60%,次生硫化铜占总铜的11.81%;非磁性硫占总硫的62.02%,磁性硫占总硫的37.62%。为确定该矿石的合理铜、硫回收工艺,进行了选矿试验研究。结果表明,矿石在磨矿细度为-0.074 mm占75%的情况下,采用1粗3精2扫、中矿顺序返回(精选1、扫选1中矿合并再磨后返回)流程浮铜,浮铜尾矿1次弱磁选磁黄铁矿,弱磁选尾矿1粗2扫流程浮选黄铁矿,可获得铜品位为19.89%、铜回收率为82.07%的铜精矿,硫品位为33.18%、硫回收率为29.11%的磁性硫精矿,以及硫品位为43.75%、硫回收率为55.26%的硫精矿,总硫回收率达84.37%,该工艺有效地回收矿石中的铜、硫资源。  相似文献   

4.
某高硫铜矿石磁黄铁矿和绿泥石等易泥化脉石矿物含量较高,且磁黄铁矿的可浮性和磁性差异较大,对铜硫分离浮选干扰很大。根据矿石性质,采用铜浮选(铜中矿再磨)—磁选回收磁黄铁矿—硫强化浮选的浮磁联合分选工艺进行了试验研究,即首先在较低碱度下采用选择性组合捕收剂(BK-306+TL-1)优先选铜,铜中矿再磨再选;然后采用磁选回收磁性硫化物,最后以丁基黄药+AT608组合捕收剂并辅之以BK546高效硫活化剂强化浮选回收硫矿物,使矿石中的铜和硫铁矿物得到了有效的分离回收。闭路试验获得含铜28.38%、铜回收率87.33%的铜精矿,含硫36.80%、含铁57.97%、磁硫品位(Fe+S)94.77%、硫回收率31.13%的磁黄铁硫精矿,以及含硫49.06%、硫回收率57.73%的硫精矿,硫总回收率为88.86%。  相似文献   

5.
钒钛磁铁矿选铁尾矿中硫钴资源综合回收研究   总被引:1,自引:1,他引:0  
本文以工艺矿物学为基础,研究从攀西某钒钛磁铁矿选铁尾矿中回收硫钴资源的关键因素和工艺流程。研究结果表明,含钴黄铁矿、黄铁矿和磁黄铁矿的分离是实现选铁尾矿中硫钴资源综合回收的关键,强磁选是实现含钴黄铁矿分离的有效措施,采用浮选—精矿再磨再选—高场强阶段磁选工艺可以得到含钴0.40%、含硫50.45%的钴硫精矿,钴和硫回收率分别为6.74%和19.07%,同时得到含硫37.23%、硫回收率20.81%的硫精矿,实现选铁尾矿中硫、钴资源的综合回收。  相似文献   

6.
某铁矿石中铁以磁铁矿为主,含部分黄铁矿、磁黄铁矿等铁矿物。磁黄铁矿和黄铁矿的存在,致使在采用直接磁选时,铁精矿含硫较高。针对矿石中的磁铁矿物和含硫矿物的特性特点,进行了详细的多方案试验研究。研究结果表明,原矿粗磨磁选抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程以及磁滑轮抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程均适合处理该铁矿,矿山可通过经济计算确定最佳的提质降杂方案。该技术为同类型磁铁矿山脱硫也提供了技术支持。  相似文献   

7.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

8.
南京某铁矿选矿厂在利用含硫铁矿石选铁的过程中反浮选回收以黄铁矿为主的伴生硫矿物,但目前黄铁矿浮选的指标较差。运用矿物解离分析仪(MLA)测试、化学分析、XRD分析等相结合的手段,研究了现有入浮原矿和浮选硫精矿中硫矿物的工艺矿物学特征,主要对黄铁矿的粒度分布及其解离度进行了测定,分析了黄铁矿浮选指标较差和浮选铁尾矿含硫较高的原因。研究结果表明:入浮原矿的磨矿细度较低,-0.074 mm含量为60.80%;入浮原矿中黄铁矿单体解离度不高,为70.92%,不利于硫精矿品位及硫回收率的提高;硫精矿中黄铁矿单体解离度仅为8072%,连生体较多是导致其品位较低的主要原因。黄铁矿的嵌布特征分析结果表明,大部分连生体中的黄铁矿容易进一步实现单体解离。因此可通过优化药剂制度及浮选条件提高粗选的硫回收率,降低铁尾矿中的硫含量,并通过对浮选粗精矿再磨-精选提高硫精矿品位,且该研究结果可为优化该含硫铁矿的硫资源回收工艺提供重要的理论基础。  相似文献   

9.
某高硫铜矿石磁黄铁矿和绿泥石等易泥化脉石矿物含量较高,且磁黄铁矿的可浮性和磁性差异较大,对铜硫分离浮选干扰很大。根据矿石性质,采用铜优先浮选—磁选回收磁黄铁矿—硫浮选工艺进行了选矿试验研究,即首先在较低碱度下采用铜选择性捕收剂组合(BK-306 TL-1)优先选铜;然后采用磁选回收磁性磁黄铁矿,再以高效硫活化剂BK546和组合捕收剂(丁基黄药 AT608)强化浮选回收硫矿物,实现了矿石中铜、硫的有效回收。闭路试验获得含铜24.81%、铜回收率86.31%的铜精矿,含硫37.83%、含铁58.21%、磁硫品位(Fe S)96.04%、硫回收率40.60%的磁黄铁硫精矿,以及含硫46.05%、硫回收率47.90%的硫精矿,硫总回收率为88.50%。  相似文献   

10.
对秘鲁某铁多金属矿含Cu 0.127%、Au 0.08 g/t、S 2.08%、Fe 40.56%的深部矿石进行了选矿工艺试验研究。该矿原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,根据矿石性质,采用铜硫等可浮—硫浮选—磁选和铜硫等可浮—磁选—铁精矿浮选脱硫两种原则工艺流程进行试验研究,铜硫等可浮分选时,采用选择性的铜捕收剂BK306在无碱条件下将铜和部分易浮硫化物浮出,然后进行铜硫分离回收铜、金;最后通过磁选从浮选尾矿中回收铁。通过铜硫等可浮(粗精矿再磨精选分离)—硫强化浮选—磁选和铜硫等可浮(粗精矿再磨精选分离)—磁选—铁精矿强化浮选脱硫两种试验方案的工艺流程和闭路试验指标的对比分析,最终确定了铜硫等可浮(粗精矿再磨精选分离)—磁选—铁精矿强化浮选脱硫的工艺流程,闭路试验获得含铜19.68%、含金8.26 g/t、铜回收率73.19%、金回收率41.83%的铜精矿,含硫35.58%、硫回收率26.02%的硫精矿,以及含铁69.23%、含硫0.16%、铁回收率91.40%的铁精矿。该工艺既可实现...  相似文献   

11.
云南某选矿厂铜硫分离后的陶瓷过滤机尾矿为高砷硫铁矿。化学分析表明,矿样中含硫27.32%,有毒元素砷含量高达4.85%。X射线衍射、电子探针和能谱分析表明,矿样中主要硫化矿物为黄铁矿,其次为磁黄铁矿和毒砂,主要脉石矿物为白云石、石英等,黄铁矿和毒砂基本单体解离。根据高砷硫铁矿性质,采取“先浮后磁”的工艺对高砷硫铁矿进行选别,以大分子有机弱酸盐为主的高效药剂(YX-SY1)作为毒砂的抑制剂,通过“浮硫抑砷”的浮选流程分离黄铁矿与毒砂,得到的浮选精矿硫品位为48.11%、硫回收率为42.94%、含砷0.35%;然后根据磁黄铁矿具有磁性这一性质将浮选尾矿给入高梯度磁选机进行选别,得到硫品位37.59%、硫回收率25.32%、含砷0.58%的磁选精矿,而磁选尾矿硫品位为15.66%、含砷7.89%,其中砷的回收率高达95.79%,实现了高砷硫铁矿中硫砷元素的高效分离。  相似文献   

12.
广西某高硫铜矿石中滑石等易浮硅质矿物含量高,现场采用弱磁选-浮铜-浮硫工艺流程进行分选,除弱磁选能较好地回收磁黄铁矿外,黄铜矿浮选和黄铁矿浮选均因易浮硅质矿物的干扰而难以获得合格精矿。为此,在大量探索试验的基础上,采用弱磁选-黄铜矿和硅质矿物混合浮选-混浮精矿铜硅摇床分离-混浮尾矿浮黄铁矿的工艺流程处理该矿石,获得了磁选硫精矿硫品位和回收率分别为38.69%和64.48%,浮选硫精矿硫品位和回收率分别为44.57%和30.99%,铜精矿铜品位和回收率分别为13.87%和63.89%的良好试验指标,有效地综合回收了铜、硫矿物。  相似文献   

13.
康怀斌  肖国圣 《现代矿业》2023,(9):183-186+198
某选矿厂为了回收利用选铜、锌后尾矿中的铁、硫资源,实现伴生矿产资源的综合开发利用和有价组分的梯级回收,针对选锌尾矿中的磁黄铁矿在选锌过程中被大量石灰抑制可浮性变差的问题,通过在磁场强度175 kA/m的条件下进行弱磁选,弱磁选尾矿经1粗3精1扫浮选流程得到了硫精矿1;弱磁选精矿再磨至-0.038 mm87.50%后,经1粗3精3扫流程获得硫精矿2,两者合并获得了硫品位31.15%、硫回收率81.62%的最终硫精矿;将弱磁精矿浮选后尾矿再进行弱磁选,得到了铁品位64.87%、铁回收率35.09%、含硫4.19%的铁精矿,实现了铁、硫资源的综合回收。  相似文献   

14.
某含铜高硫磁铁矿石选矿试验   总被引:1,自引:0,他引:1  
唐雪峰 《金属矿山》2011,40(4):162-165
针对某磁铁矿石中含铜且磁黄铁矿含量高的特点,采用弱磁选-弱磁选精矿反浮选脱硫-弱磁选尾矿浮铜工艺进行选矿试验,获得了铁品位为66.85%,铁回收率为67.82%,硫含量仅0.20%的铁精矿和铜品位为23.40%,铜回收率为64.06%的铜精矿以及硫品位为23.05%的附加产品硫精矿,实现了铁、铜、硫的综合回收。草酸对磁黄铁矿的选择性活化作用和新型捕收剂CYS对磁黄铁矿的强捕收能力是磁铁矿与磁黄铁矿得以高效分离的关键。  相似文献   

15.
磁黄铁矿与磁铁矿的浮选分离实践   总被引:5,自引:0,他引:5  
处理以磁黄铁矿和磁铁矿为主要回收对象的矿石,采用浮-磁工艺对磁黄铁矿强化浮选产出合格的硫精矿,浮选尾矿再磁选产出铁精矿。与之对比,先磁后浮分离效果不好。  相似文献   

16.
缅甸某低品位铁锡矿石含铁29.79%、锡0.495%,脉石成分主要为Si O2,主要有价矿物为磁铁矿和锡石,二者紧密共生,粒度较细。为确定该矿石的高效开发利用工艺,基于原矿性质研究,采用湿式弱磁选铁—锡石回收(摇床重选—摇床中矿再磨后高梯度强磁选除铁—摇床重选)—锡综合粗精矿浮选脱硫磁选除铁(弱磁选+高梯度强磁选)流程进行了选矿试验。结果表明:该工艺最终可获得锡品位57.956%、锡回收率69.08%的锡精矿,铁品位65.21%、铁回收率48.22%的铁精矿,硫品位46.35%、硫回收率38.31%的硫精矿,铁、锡和硫精矿所含杂质均未超标,总尾矿的锡品位降至0.153%,实现了铁锡矿石资源的综合回收利用。  相似文献   

17.
某高砷含铋硫精矿铋、硫、砷含量分别为0.67%、34.52%和3.97%,主要含硫矿物磁黄铁矿含量达85.92%,主要含砷矿物毒砂含量为8.83%,自然铋和辉铋矿含量分别为0.54%和0.15%;试样中的主要有用矿物单体解离度不高,其中铋矿物的解离度仅为53.22%,与磁黄铁矿等硫化物连生的铋占38.57%,还有8.21%的铋与脉石等其他矿物连生。为实现该高砷含铋硫精矿的高效综合利用,进行了选矿试验研究。研究表明:试样采用1次弱磁选+1次强磁选选硫,以石灰+SP组合抑制砷、硝酸铅活化铋、BIC为铋浮选捕收剂,1粗2精2扫、中矿顺序返回流程分离铋、砷,最终获得了硫品位为32.67%、含砷0.46%、硫回收率为77.28%的硫精矿,铋品位为50.19%、铋回收率为80.33%、含砷仅为0.45%的铋精矿,以及砷品位为20.78%、砷回收率为90.49%的砷精矿,取得了良好的硫、铋、砷分离效果,实现了该高砷含铋硫精矿的高效综合回收利用。试验采用弱磁选+强磁选的联合流程高效脱除磁性差异较大的磁黄铁矿,大大减少了铋、砷浮选分离的矿量,降低了磁黄铁矿对后续浮选的影响。  相似文献   

18.
某铅锌矿尾矿硫铁资源综合回收工艺试验研究   总被引:2,自引:1,他引:1  
为了综合回收某铅锌矿尾矿中的硫、铁资源,对尾矿性质及其工艺矿物学研究分析表明,矿石中含有难选磁黄铁矿,受其影响铁精矿含硫超标;选用活化剂强化对难选磁黄铁矿捕收,采用浮选—磁选—浮选联合回收工艺,成功地获得了品位38.77%的优质硫精矿及含S 0.547%、Fe 58.04%的合格铁精矿.  相似文献   

19.
周源  郭文峰 《金属矿山》2012,41(3):152-154
某浮锌尾矿中硫含量为10.13%,主要硫化物为磁黄铁矿和黄铁矿。采用磁-浮联合流程进行了硫回收试验研究,通过1粗1精弱磁选和1粗1精1扫浮选可获得硫品位为35.59%、回收率为64.82%的磁选硫精矿和硫品位为31.09%、回收率为23.42%的浮选硫精矿,综合硫精矿硫品位为34.27%、回收率为88.24%。  相似文献   

20.
郏威  王忠强  姚灯磊  黄秋菊  苏康 《金属矿山》2020,49(12):130-135
安徽某高硫铁矿选厂采用阶段磨矿—浮选—弱磁选—强磁选—重选的工艺流程回收硫、铁,存在铁精矿含硫高,伴生元素铜未能得到较好的回收等问题。为得到合格的铁精矿产品,并充分回收该矿伴生的硫,通过偏光显微镜、化学分析、MLA 等多种分析测试手段对该高硫铁矿石进行了详细的工艺矿物学分析。结果表明:矿石主要有用铁矿物为磁铁矿和赤铁矿,含量分别为 35.38% 和 11.02%,含硫矿物主要为黄铁矿,含量为 6.72%;磁铁矿多呈斑状形式产出,局部被脉石沿裂隙充填,赤铁矿大多交代磁铁矿形成假象矿,具交代残余结构;有用铁矿物磁铁矿的嵌布粒度较粗,主要分布在+0.07 mm 粒级,分布率为 63.39%,赤铁矿主要呈细粒分布;Fe 主要赋存在磁铁矿中,分布率为 66.27%,其次分布在赤铁矿中,分布率为 19.85%;S 元素则主要分布在黄铁矿和硬石膏中,分布率分别为 56.58% 和 42.79%。根据工艺矿物学研究结果,磁铁矿和赤铁矿是回收的主要目的矿物,要想获得较好的铁精矿品位和回收率,对弱磁尾矿应该进行进一步细磨,同时也要防止过磨导致泥化。磁铁精矿中的硫主要分布在硫酸盐矿物石膏中,在磁选过程中夹杂进入铁精矿中,导致铁精矿中含硫超标,因此建议采用淘洗机对现场二磁精矿进行提铁降硫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号