首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
以黑龙江某难选钒钛磁铁矿石的工艺矿物学特征为基础,按弱磁选-强磁选-浮选原则流程进行了铁钛综合回收选矿工艺研究。结果表明,采用1段磨矿-1次弱磁选-弱磁选尾矿再磨-1次强磁选-1粗2扫4精、中矿顺序返回浮选流程处理该矿石,可获得Fe、TiO2、V2O5品位分别为55.04%、12.11%、0.62%,回收率分别为83.01%、63.08%、85.54%的铁精矿,以及TiO2、Fe、V2O5品位分别为45.11%、34.90%、0.22%,回收率分别为27.56%、6.17%、3.56%的钛精矿。  相似文献   

2.
某海滨砂矿的矿物学特征与选矿试验研究   总被引:1,自引:0,他引:1  
在矿石工艺矿物学研究的基础上,通过磁选、重选等系列试验研究,确定了某海滨砂矿的最佳选矿工艺流程及工艺指标。工艺矿物学研究表明,钛、铁共生紧密,难以分离,可作为钛磁铁矿回收利用。原矿磁选试验结果表明,采用湿法预选-磨矿-磁选流程得到的钛磁铁矿精矿:Fe品位为60.28%,回收率为76.13%,TiO2品位为12.62%,回收率为62.06%。尾矿重选试验结果表明,采用一粗一精的摇床选别流程得到的精矿:Fe品位为46.70%,作业回收率为68.45%,TiO2品位为22.02%,作业回收率为79.01%。  相似文献   

3.
针对云南某钒钛磁铁矿试样中钒钛磁铁矿和钛铁矿分别呈粗、细粒分布并含有大量弱磁性金云母的特点,采用"磨矿-弱磁选铁-高梯度磁选、螺旋溜槽粗选-钛粗精矿细磨-弱磁选铁-高梯度磁选、摇床精选钛"新工艺,获得铁品位和V2O5品位分别为65.97%和0.93%的钒钛磁铁矿精矿,铁回收率和V2O5回收率分别为54.98%和57.75%,及Ti O2品位和Ti O2回收率分别为42.26%和31.19%的钛精矿,为该类矿产资源的开发利用奠定了技术基础。  相似文献   

4.
陕西安康某磁铁矿石主要含铁矿物为磁铁矿和钛磁铁矿,主要脉石矿物为橄榄石、长石、辉石。矿石破碎至-6 mm后,在磁场强度为358.2 k A/m条件下进行粗粒干式抛尾,可获得铁品位为16.81%、回收率为90.80%的预选精矿,抛出产率为16.67%、铁品位为8.52%的合格尾矿。预选精矿经两段阶段磨矿阶段磁选试验,获得的铁精矿铁品位为61.22%、Ti O2品位为2.39%,铁回收率为36.69%、Ti O2回收率为6.47%,尾矿Ti O2含量为3.87%、回收率为85.77%。该工艺不仅可以较好地回收利用磁性铁矿物,还有利于后续选钛。  相似文献   

5.

对某钒钛铁矿石进行工艺矿物学研究,分析影响矿石开发利用的矿物学因素。研究结果表明:矿石中的有价元素为钒、钛、铁,杂质元素主要是铝和硅;主要铁、钛矿物分别为磁铁矿-假象赤铁矿-(钛)赤铁矿、褐铁矿和和钛铁矿。铁、钛矿物与脉石连生关系不紧密,且密度、磁性差异较大,易与脉石矿物分离,但是铁、钛矿物之间具有复杂的连生界面,磁性变化大,磁性范围重叠,采用常规磁选工艺难以实现铁、钛的有效分离。采用磁化焙烧-磁选工艺,从磁铁矿-假象赤铁矿-(钛)赤铁矿中回收铁和钒,理论品位为Fe 64.23%和V2O5 1.29%,理论回收率分别为60.29%和72.54%;从钛铁矿中回收钛,理论品位为TiO2 52.70%,理论回收率为65%左右。

  相似文献   

6.
毕机沟尾矿库堆存大量钒钛磁铁矿尾矿,其铁、钛矿物含量相对较高,具有很高的再回收利用价值。采用ZCLA选矿机进行1次粗粒湿式预先抛尾,可得到尾矿产率为39.16%,精矿铁、钛回收率分别为82.95%、93.22%的指标。ZCLA精矿弱磁选回收铁矿,强磁选—重选回收钛铁矿工艺流程,可获得铁精矿全铁品位为56.90%和钛精矿Ti O2品位为44.48%的合格产品,开创了一种钒钛磁铁矿尾矿库综合利用的新工艺。  相似文献   

7.
云南钛铁矿石中主要有用矿物为钛铁矿、钛磁铁矿,矿石泥化较严重,针对该矿石进行了磁选试验研究。对原矿采用选择性擦洗解离,可以得到TiO2品位35.31%,产率78.25%的+0.030mm产品及TiO2品位8.46%,产率21.75%的-0.030mm产品。+0.030mm粒级采用弱磁除铁,弱磁尾矿采用分级-强磁选工艺进行选钛试验,对弱磁精矿再磨后采用弱磁-强磁工艺进行钛、铁分离;-0.030mm粒级采用脱泥-磁选工艺进行细粒选钛试验。最终可得到TiO2品位48.83%的钛精矿,回收率85.51%,TFe品位56.62%的铁精矿,回收率25.17%。该工艺合理可行,选矿指标较为理想。  相似文献   

8.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

9.
某铁矿石中磁铁矿与赤褐铁矿呈细粒嵌布,原矿含铁34.33%。根据该矿石特性,采用先弱磁选后强磁选的联合工艺回收此铁矿石,弱磁选可获得铁品位为67.38%,铁回收率为47.57%的铁精矿1;弱磁选尾矿与弱磁选粗精矿再磨精选中矿通过强磁选工艺可获得铁品位为60.38%,铁回收率为26.68%的铁精矿2,最终铁综合回收率达到74.25%,取得了满意的试验指标。  相似文献   

10.
陈达  闫武 《矿产综合利用》2012,(1):21-23,45
简述了Windimurra钒钛磁铁矿主要金属元素的赋存、主要矿物组成及矿物含量。磁选条件试验确定了该矿的试验磁场强度(磁选粗选、扫选磁场强度为280kA/m、350kA/m)和粒度(-0.5mm),并进行了一粗一扫一精、扫选精矿同精选尾矿合并后再磁选流程的闭路试验,最终获得了产率为41.93%,TFe、TiO2、V2O5品位分别为52.14%、18.52%、1.04%,TFe、TiO2、V2O5回收率分别为72.26%、83.30%、82.43%的钒(铁)精矿,对钛磁铁矿(包括钛磁赤铁矿、钛赤铁矿和钛磁铁矿)和钛铁矿矿物的回收率分别为84.32%、84.85%,能有效地回收该资源中的铁、钛、钒。  相似文献   

11.
攀枝花朱家包包低品位钒钛磁铁矿选矿研究   总被引:1,自引:1,他引:0       下载免费PDF全文
对含TFe为13.54%,Ti O2为7.31%的攀枝花低品位钒钛磁铁矿,进行了粗磨湿式中磁抛废、细磨弱磁选铁和选铁尾矿强磁-浮选选钛的选矿工艺试验研究。该工艺最终获得了含TFe为55.18%,回收率为39.98%铁精矿和含Ti O2为46.13%,回收率为43.70%钛精矿,实现了对原矿中铁、钛的较佳回收。  相似文献   

12.
某低品位钛铁矿TFe含量为10.20%、TiO2品位为4.55%,属于低铁低钛等级矿石。矿石成分简单,主要工业矿物为钛铁矿和磁铁矿,主要脉石矿物为角闪石、长石。针对该矿石,首先进行了重磁拉抛尾,获得了TFe含量为12.31%,TiO2品位为5.81%的抛尾粗精矿;抛尾粗精矿经磨矿—选铁处理后,采用"螺旋溜槽+干式磁选"工艺,获得了TiO2品位为46.17%的钛精矿产品,回收率为46.72%。实现了矿石中铁、钛矿物的高效回收。  相似文献   

13.
甘肃某含钪低品位钛铁矿石Fe、TiO2、Sc2O3含量分别为10.20%、4.55%和55.6 g/t,磁性铁仅占总铁的17.90%,钛铁矿形式的铁占总铁的22.02%,硅酸盐形式的铁占总铁的52.05%;钛铁矿形式的钛占总钛的69.01%,钛磁铁矿中钛占总钛量的3.52%,其余的钛主要赋存在难以富集和回收的硅酸盐矿物中。磁铁矿嵌布粒度主要为0.5~0.04 mm,钛铁矿嵌布粒度主要为1~0.07 mm,二者嵌布关系密切,混杂充填在硅酸盐矿物粒间,钪主要以类质同象形式存在于深色钙镁酸盐类矿物(主要为角闪石)中。为了确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,6~0 mm矿石经重磁拉选矿机预选抛出29.82%的含泥粗粒尾矿后,在阶段磨选情况下(二段磨矿细度为-0.074 mm占81%),采用1粗(135.4 kA/m)2精(119.4 kA/m和119.4 kA/m)弱磁选流程选铁,选铁尾矿采用1粗(0.7 T)1精(0.6 T)高梯度强磁选流程预富集钛,强磁选钛精矿经1粗1扫4精、中矿顺序返回流程选钛,最终获得Fe品位为60.78%、Fe回收率为13.11%的铁精矿,TiO2品位为47.05%、TiO2回收率为55.74%的钛精矿和Sc2O3品位为99.0 g/t、Sc2O3回收率为48.68%钪精矿。  相似文献   

14.
某超低品位钒钛磁铁矿选铁尾矿TiO_2品位极低,仅为3.33%,可回收金属矿物为钛铁矿,主要脉石矿物为橄榄石、辉石、长石和角闪石;品位低、橄榄石含量高是该矿石的两大特点,如何高效预富集及分选成为制约其开发利用的关键因素。针对选铁尾矿性质,采用强磁抛尾—强磁精矿再磨—摇床富集联合预选工艺可将TiO_2品位由3.33%提升至29.19%,作业回收率50.12%;预选精矿进一步浮选可获得TiO_2品位45.80%、浮选作业回收率为76.68%的钛精矿产品,对选铁尾矿TiO_2回收率达到38.43%,通过联合工艺使超低品位钒钛磁铁矿具备经济利用价值。  相似文献   

15.
袁家村难选闪石型磁铁矿具有铁硅酸盐含量高、矿物组成复杂、矿物嵌布粒度极细的特点。在工艺矿物学研究的基础上,通过预选(早丢)和弱磁精矿反浮选或淘洗磁选在相对粗粒条件下获得大部分高品位铁精矿,达到降低磨矿成本的目的。最终得出了适合袁家村闪石型磁铁矿石的选矿工艺流程,采用-3 mm湿式预选-两段阶磨-四次弱磁选-反浮选-浮尾再磨弱磁选流程,可获得精矿产率29.42%、铁品位68.16%、回收率66.55%的指标。该工艺解决了袁家村闪石型磁铁矿经济开发利用的难题。   相似文献   

16.
攀枝花白马低品位钒钛磁铁矿选铁尾矿含钛5.59%,含铁10.51%,由于某些特殊原因一直没有开发利用。本文主要针对攀枝花白马钒钛磁铁矿选铁尾矿中再回收钛资源进行了研究,其目的在探讨该资源二次开发利用的可行性。根据铁尾矿工艺矿物学性质,分别开展了磁场强度、磨矿细度、冲程、冲次、转速等变量对磁选指标的影响,最终开发了适应于处理该尾矿的高梯度磁选-浮选联合工艺。试验结果表明,采用该工艺能够获得TiO2品位47.31%、回收率39.52%的钛精矿产品。该技术的开发为后期尾矿资源化的开发奠定了坚实的技术基础,从而为国内同类钒钛资源的综合利用提供技术支撑。   相似文献   

17.
朱显帮  黄新 《金属矿山》2012,41(3):66-69
选抛废粒度研究、阶段磨矿-阶段弱磁选和弱磁精反浮选脱硅试验研究。结果表明:湿式预选抛废可以显著提高入磨矿石品位、减少入磨量,采用2段磨矿、2段弱磁选不能获得铁品位和磷含量合格的铁精矿,弱磁精经1粗1精3扫反浮选脱磷,最终可获得铁品位为64.78%,铁回收率为68.01%,磷含量为0.139%的铁精矿。  相似文献   

18.
根据印尼某低品位铁矿石的特性,采用预选抛尾—磨矿—弱磁选工艺流程对该矿进行了选铁实验室试验研究。结果表明,原矿破碎至-3mm采用湿式弱磁预选,可抛弃产率73.58%的废石,提高入磨铁矿石TFe品位至32.47%,其中磁性铁的损失仅为2.14%左右,磁性产品磨矿至-200目75%后经弱磁选铁,最终可获得产率13.31%,TFe品位57.44%、回收率63.41%,含V2O50.54%、TiO29.16%的铁精矿。  相似文献   

19.
某细粒低品位铁矿石中磁铁矿与磁黄铁矿紧密共生, 为了在回收磁铁矿的同时, 综合回收伴生的磁黄铁矿资源, 针对矿石性质特点, 采用阶段磨矿-阶段弱磁选-一段磁选精矿浮选脱硫-二段磁选精矿反浮选提铁-反浮选尾矿再磨再选工艺流程, 使用磁黄铁矿高效活化剂CS和铁矿反浮选新型阳离子捕收剂YA, 获得了TFe品位70.05%、S含量0.16%、TFe回收率73.17%的高品位铁精矿和S品位25.86%、TFe含量50.10%、S回收率53.43%的硫精矿, 有效实现了磁铁矿与磁黄铁矿的综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号