首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
根据某铁矿山老尾矿库尾矿的性质特点,进行了尾矿铁资源回收工艺试验,试验采用原矿阶段磨矿—弱磁+细筛—强磁—重选流程,最终获得了产率为22.12%,铁品位为58.90%,铁回收率为64.31%的符合冶炼要求的铁精矿,并为此类尾矿资源地开发利用提供了技术依据.  相似文献   

2.
浮铜尾矿回收铁的试验研究   总被引:1,自引:1,他引:1  
针对某铜矿山尾矿库堆存的尾矿,经过浮选处理后的浮选尾矿产品进行回收铁的试验研究。在工艺矿物学研究的基础上,采用弱磁选—强磁选—粗精矿再磨精选工艺流程,闭路试验获得了铁品位44.15%、铁回收率52.45%的铁精矿。  相似文献   

3.
对广西某选铜尾矿进行了详细的选矿试验研究,根据矿石特性,采用磁选—铜硫混浮再分离—浮选尾矿重选工艺流程,有效地综合回收了尾矿中的铁、铜、硫、锡有价元素,最终获得的试验指标为:铁精矿铁品位63.66%、铁回收率16.89%,铜精矿铜品位16.70%、铜回收率40.06%,硫精矿硫品位36.77%、硫回收率57.05%,锡精矿锡品位24.59%、锡回收率35.16%。  相似文献   

4.
时小坤  王伟之 《现代矿业》2012,(7):109-110,121
针对研山铁矿浮选尾矿磁性铁含量为1.80%,含量较高且总尾矿量大这一特点,进行了磨矿磁选铁回收试验。试验结果表明:采用浮选尾矿回收抛杂磁选—磨矿—磁选—2段磁选柱磁选后,可选出品位在60%以上的铁精矿。磁选柱选出的尾矿再经过细磨后,经磁选管选别,获得了铁精矿品位达63%的满意指标。  相似文献   

5.
介绍了采用简单工艺流程及常规磁选设备开展某选铜尾矿回收铁的试验研究。该矿石中磁性铁矿物含铁量在0.169%左右。目前通过磁选从选铜尾矿中回收的铁精矿含铁品位为54.12%,影响铁精矿的销售。试验从磁场强度、再磨细度等方面展开了较为详细的研究,通过对粗精矿进行磨矿弱磁选后,可使铁精矿品位提高到65.29%,获得优质铁精矿。  相似文献   

6.
介绍了采用简单工艺流程及常规磁选设备开展某选铜尾矿回收铁的试验研究。该矿石中磁性铁矿物含铁量在0.169%左右。目前通过磁选从选铜尾矿中回收的铁精矿含铁品位为54.12%,影响铁精矿的销售。试验从磁场强度、再磨细度等方面展开了较为详细的研究,通过对粗精矿进行磨矿弱磁选后,可使铁精矿品位提高到65.29%,获得优质铁精矿。  相似文献   

7.
叶雪均  熊立 《金属矿山》2012,41(7):155-157
针对安徽某铁矿磁选尾矿中铜矿物粗细不均,次生硫化铜含量较高,且部分黄铜矿被黄铁矿包裹等特点,在原铜硫混浮-铜硫分离工艺前进行了增设快速浮铜工艺环节的研究,并对混精再磨、分离工艺进行了优化研究。采用试验确定的半优先浮铜闭路试验流程处理该试样,可获得铜品位21.48%、回收率达82.85%的铜精矿,以及硫品位为48.34%、回收率为84.43%的硫精矿,试验铜回收率较生产平均铜回收率高10个百分点以上。  相似文献   

8.
选铁尾矿回收云母选矿试验   总被引:1,自引:0,他引:1  
王玉峰 《现代矿业》2013,29(6):31-34
某选铁尾矿其云母含量为20.34%,具有工业回收价值,为此进行了云母回收试验。经试验研究采用脱泥-碱性浮选选矿工艺,最终试验获得了回收产率在10%左右,K2O含量为7.93%,云母矿物含量在96%以上的高纯度云母,此工艺的推广有效地降低了其尾矿排放量,经济效益和社会效益显著。  相似文献   

9.
某选厂为了提高资源回收利用率,改善选厂及周边环境,实现选厂节能减排,针对选厂尾矿存在一定量铁资源未有效回收利用及尾矿大量堆存污染环境且占用土地等问题,进行了化学多元素、物相分析和弱磁—强磁—摇床试验研究。研究得出:该尾矿全铁品位为11.90%,有回收利用价值,通过试验得到了全铁品位65.72%、铁回收率14.92%的铁精矿1与全铁品位59.15%、铁回收率3.59%的铁精矿2,试验表明该工艺流程可实现该尾矿铁资源的回收利用。  相似文献   

10.
为有效利用南钢某矿业公司某尾矿中含有的铜、硫、铁等有价元素,对尾矿进行了浮选回收试验,获得了铜品位为10.31%,回收率为46.44%的铜精矿;硫品位为37.46%,回收率为75.43%的硫精矿;铁品位为65.72%,回收率为13.28%的铁精矿,取得了铁、铜、硫综合回收利用的较好指标。  相似文献   

11.
对澳大利亚某铜尾矿进行了选矿试验研究,采用浮选—磁选联合工艺流程,综合回收尾矿中的硫、铁元素。试验结果表明:采用新型XT-01作为硫铁矿捕收剂,可获得硫品位为49.80%、回收率为92.58%的硫精矿;浮硫尾矿采用湿式弱磁选机磁选,获得了铁品位为64.11%、全铁回收率为45.91%的铁精矿,实现了铜尾矿中硫、铁的综合回收。  相似文献   

12.
铜尾渣深度还原回收铁工艺研究   总被引:1,自引:0,他引:1  
为给含铁铜渣深度资源化利用提供技术依据,以国内某铜渣磨矿-浮选选铜尾矿为原料,以焦粉为还原剂、氧化钙为添加剂,以含铁硅酸盐还原成金属铁为目标,以还原产物磨矿-弱磁选精矿指标为评价依据,进行了还原焙烧工艺条件研究。试验结果表明:①还原温度和还原时间对还原效果影响显著;②在氧化钙用量为6%、焦粉用量为14%、还原温度为1 300 ℃、还原时间为2 h情况下,获得的金属铁粉的铁品位为92.96%、铁回收率为93.49%,且杂质硫磷含量低,属优质炼钢辅料。铜尾渣深度还原产物的SEM分析表明,还原产物中金属铁颗粒粒度较均匀,形状较规则,嵌布关系较简单,无明显夹杂其他渣相的现象,这为后续磨选作业实现铁颗粒的较好解离和获得较好分选指标创造了条件。  相似文献   

13.
介绍了鞍山地区处理以贫赤铁矿石为主的选矿厂,采用"阶段磨矿、粗细分选、重-磁-浮联合流程"工艺,分析了重选尾矿、强磁尾矿和浮选尾矿中铁矿物流失的情况,进行了从浮选尾矿中回收铁精矿的试验研究,并为其提供了新途径。  相似文献   

14.
从铜矿尾矿中回收重晶石的实验研究   总被引:2,自引:0,他引:2  
为实现浙江平水铜矿无尾矿生产, 针对尾矿的性质, 展开了从尾矿中回收重晶石的研究。由筛析结果可知, 尾矿中的重晶石主要富集在细粒级, 因此直接采用-0.074 mm粒级进行浮选重晶石的研究。先进行脱硫, 脱硫后的尾矿浮选回收重晶石。原硫酸钡品位为11.53%时, 以碳酸钠为调整剂, 硅酸钠为抑制剂, 十二烷基硫酸钠和油酸为捕收剂, 可获得硫酸钡品位91.68%, 回收率80.41%的重晶石, 有效回收了尾矿中的重晶石, 为无尾矿生产提供有力的技术支持。  相似文献   

15.
针对山东某选矿厂铁尾矿金属流失严重的问题,对其尾矿进行了系统性的回收工艺流程试验研究,最终确定了强磁-反浮选的回收工艺流程,得到了产率为7.94%、铁品位为52.17%、铁回收率为37.23%的铁精矿,综合抛尾铁品位为7.59%,经济效益显著。   相似文献   

16.
为了回收铜熔炼烟尘中的有价金属,对某铜冶炼厂产生的高铜、高砷烟尘进行了性质分析,确定了烟尘中主要元素的赋存状态及含量。结果表明,烟尘中铜和锌主要以硫酸盐和氧化物的形式存在,砷主要以氧化物的形式存在,具有良好的浸出特性。采用低浓度酸浸—硫化沉淀法回收烟尘中的铜,并考察了絮凝剂对硫化物矿浆沉降性能的影响。结果表明:(1)在初始硫酸浓度为40 g/L,浸出温度为50℃,浸出时间为90 min,液固体积质量比为4∶1 mL/g的条件下,Cu、Zn、As的浸出率分别为96.33%、96.52%和83.72%。(2)硫化沉铜时,在硫化钠过量系数为1.3,p H值为3.0,反应时间为20 min的条件下,Cu的沉淀率可达到99.99%,硫化沉淀产物主要物相为Cu S,其中铜的品位为56.90%,可直接用于工业生产。沉铜后液可继续回收Zn等有价金属。(3)加入絮凝剂可使硫化沉淀的粒径变大,加速矿浆的沉降并且有助于固液分离。  相似文献   

17.
对澳大利亚某铜尾矿进行了选矿工艺流程和药剂制度的研究。讨论了捕收剂种类、用量,粗选矿浆p H值,活化剂用量等因素对浮选工艺的影响;确定了丁基黄药作为捕收剂,用量为100 g/t,粗选矿浆p H=5.0,硫酸铜作为活化剂,用量为400 g/t的药剂制度。通过一次粗选一次扫选两次精选的浮选工艺流程,获得硫品位为47.51%,回收率为92.11%的硫精矿。实现了铜尾矿中硫化铁矿物的高效回收利用。  相似文献   

18.
杨云  赵冠飞  丁声强  刘松 《现代矿业》2012,(8):27-28,31
某选铜尾矿含硫较高,主要硫化物为磁黄铁矿、黄铁矿等,由于在选铜作业时可浮性受到抑制,因而重点对硫化矿物浮选的活化剂和捕收剂进行了条件试验,最终确定的1粗1精1扫、中矿顺序返回流程处理该含硫2.46%的选铜尾矿,可获得硫品位为35.04%、硫回收率为83.90%的硫精矿.  相似文献   

19.
以自行研制的LC1作捕收剂, 水玻璃作脉石矿物抑制剂, 采用铜硫混浮-铜硫混合精矿再磨-铜硫分离原则流程对某铁矿磁选尾矿进行了实验室研究,获得了铜精矿品位22.13%, 铜回收率81.88%, 硫精矿品位31.69%, 硫回收率76.34%的指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号