首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
为了更好地处理水环境中的偶氮染料(酸性橙,AO7)污染问题,以稻壳、尿素和锰盐为原料,通过热解法制备Mn、N共掺杂生物炭复合材料(Mn-N-BC),活化过二硫酸盐(PDS)降解酸性橙(AO7)染料废水。考察了AO7初始浓度、PDS浓度、催化剂投加量、初始pH值等因素对AO7去除率的影响。结果显示:Mn-N-BC/PDS体系对AO7染料具有较高的去除率,在30 min内可达为98.6%,其表观速率常数kobs为0.125 min-1;并且对水环境中的无机阴离子表现出较高的抗性。在3次循环利用后,AO7的去除率仍在75%左右,表明Mn-N-BC对有机污染物的去除具有较高的可重复利用性和稳定性。自由基淬灭研究、XPS分析表明:Mn-N-BC/PDS体系中AO7的降解机制包括自由基途径(·OH、SO4-·)和非自由基途径(O2-·、1O2和电子转移),其中非自由基途径为主要作用。  相似文献   

2.

内分泌干扰物双酚A (Bisphenol A,BPA)在环境中对生态安全构成了潜在的威胁,因此需要寻找一种合适的处理方法。基于Co、N共掺杂材料具有反应活性高、化学稳定性高、去除污染物效率高等优势,本文以杉木屑生物炭为原料进行Co、N共掺杂制备了具有高效过一硫酸盐(PMS)活化能力的钴、氮共掺杂生物炭(CoNC)复合材料,用以活化PMS去除水体中BPA。相比于C、NC及CoC,CoNC的表面粗糙程度增加,缺陷点位增多,电荷转移阻力减小,且结构比表面积与孔隙结构得到改善,比表面积达到70.31 m2/g;对不同Co、N掺杂比、溶液初始pH、共存阴离子对BPA去除效率的影响进行了研究。结果表明:相比于原始材料,PMS/CoNC体系表现出优异的BPA去除能力。在溶液初始pH为7,CoNC投加量为0.2 g/L,PMS浓度为0.3 mmol/L,模拟水体中BPA浓度为20 mg/L的条件下,BPA去除率在30 min达到95%。捕获实验、电化学表征表明:在PMS/CoNC体系中,BPA主要通过直接电荷转移的非自由基途径得到降解。本文为生物炭催化性能的优化及BPA在高级氧化技术中的降解研究提供借鉴。

  相似文献   

3.
采用水热合成法制备出了一种具有较高催化活性的催化剂CuFe2O4,并利用CuFe2O4活化过一硫酸盐(PMS)处理模拟抗生素废水盐酸四环素(TC),考察了操作条件初始pH、CuFe2O4投加量和PMS投加量对TC降解效果的影响。结果表明,初始pH在2~10的范围内,随初始pH的升高TC的降解率先稳定而后逐渐降低;TC的降解速率随着PMS投加量和CuFe2O4投加量的增加而逐渐增加。在CuFe2O4/PMS体系中存在活性物种·OH、SO4·-和1O2。在催化剂循环使用实验中,CuFe2O4展现出了较好的重复利用性能。在CuFe2O4/PMS体系中,TC降解出水对发光菌的抑制率先升高而后逐渐降低,也说明CuFe2O4/PMS体系对降解TC是一种有效的方法。  相似文献   

4.
钴镍掺杂锰酸锂的电化学性能研究   总被引:1,自引:0,他引:1  
采用固相烧结法分别制备了钴掺杂和镍掺杂锰酸锂锂离子电池正极材料,同时制备了纯相锰酸锂进行比较.用电感耦合等离子发射光谱仪、X射线衍射仪、电子扫描电镜和电池性能测试系统对产物的组成、结构特征、微观表面形貌和恒流充放电性能进行了表征.结果表明:所制备的掺杂锰酸锂LiMn0.9 Ni0.1O2、LiMn0.9 Co0.1O2的结晶度高,无杂质相,材料颗粒的粒径均匀、表面光滑;首次放电比容量分别为114.7mAh/g和110.8mAh/g(0.5mA/cm,2.8~4.4V,vs.Li+/Li);50次循环后,放电比容量为107.2mAh/g和103.3mAh/g,50次循环比容量保持率分别达到94.1%和95.4%.  相似文献   

5.
钴掺杂二氧化锡溶剂热法制备及其气敏性能研究   总被引:1,自引:0,他引:1  
以SnCl2·2H2O、CoCl2·6H2O和无水乙醇为原料,采用溶剂热法成功制备钴掺杂SnO2粉末。通过XRD、SEM和TEM对所得样品进行物相分析和形貌观察,并将其制成元件进行气敏性能测试。结果表明:所制备的钴掺杂SnO2粉末为四方相金红石结构,钴离子的掺入并没有改变SnO2的晶体结构,对SO2气体具有较高的灵敏度和较好的响应—恢复特性。  相似文献   

6.
通过两种不同红光磷光染料6%的PtOEP与7%的(btfmp)2Ir(acac)共掺同一基质中作为发光层,使有机电致发光器件的性能全面得到改善,共掺器件的最大效率达到了3.2cd/A,而单一染料6%的PtOEP或7%的(btfmp)2Ir(acac)掺杂器件的效率分别为1.8cd/A和2.9cd/A,另外,共掺杂器件表现出了更低的驱动电压,其效率在大电流下的衰降程度也大大降低,这些改善应归功于提高了发光层中总的掺杂浓度而没有引起相应高的浓度淬灭的结果。  相似文献   

7.
纳米金属有机框架材料的储氢性能研究   总被引:2,自引:0,他引:2  
采用溶剂热法制备了纳米金属有机框架材料,通过粉末x射线衍射(PXRD)、高分辨透射电镜(HRTEM)、红外光谱(FT-IR)、热重分析(TG)、差示扫描量热法(DSC)和压力-组成-温度测试仪(PCI)等分析和表征手段,获得了该材料结构、形貌、热稳定性和吸附性能等信息.该材料对不同吸附质(如水0.19 g/g和苯0.41 g/g),表现出不同的吸附能力,并具有双亲功能.在77 K,1.5 MPa条件,其储氢量为3.2%(质量分数,下同),包含微孔内填充的高压氢气时为3.4%,包含中孔、微孔内填充的高压氢气时为3.9%.  相似文献   

8.
近代工业的快速发展造成大量难降解的新型有机污染物进入水体,亟需经济、高效的难降解有机污染物污染控制和削减技术。近年来,基于硫酸根自由基(SO4·–)的高级氧化技术(SR-AOPs)具有强氧化性、宽pH耐受性以及方便操作性等优势而备受关注。不同种类的金属氧/硫化物、碳基材料、金属-非金属复合材料以及有机金属材料等被用来活化过硫酸盐产生活性氧,从而实现对有机污染物的氧化降解和进一步矿化。其中,层状双金属氢氧化物(Layered double hydroxides, LDHs)因其独特的层状结构优势、阴离子可交换性和客体分子可调节性,在活化过硫酸盐方面表现出优良的反应活性和催化优势。本论文从催化剂类型、催化性能与机制以及降解体系影响因素等方面,综述了LDHs及其复合材料作为非均相催化剂活化过硫酸盐的研究现状,并对催化体系持续改进以及未来发展提出相关展望。  相似文献   

9.
通过气态扩散作用,合成了MIL-101(Cr)@[Fe(HB(pz)3)2]、NH2-MIL-101(Al)@[Fe(HB(pz)3)2]和MIL-100(Al)@[Fe(HB(pz)3)2]3种MOFs材料@([Fe(HB(pz)3)2])复合物。采用红外光谱仪、原子吸收光谱仪、X射线衍射仪、物理吸附仪对3种MOFs材料@[Fe(HB(pz)3)2]复合物的组成、结构和性能进行表征测试。测试结果表明:[Fe(HB(pz)3)2]成功进入MOFs材料的孔洞中,形成了MOFs材料@[Fe(HB(pz)3)2]的复合物;MOFs材料的孔洞结构使[Fe(HB(pz)3)2]形成了一层保护外壁,从而使复合物的热稳定性和化学稳定性。经原子吸收光谱测试,可知MIL-101(Cr)@[Fe(HB(pz)3)2]、NH2-MIL-101(Al)@[Fe(HB(pz)3)2]和MIL-100(Al)@[Fe(HB(pz)3)2]中分别含有质量分数为8.11%,7.42%和1.64%的[Fe(HB(pz)3)2]。最后,对比分析了MIL-101(Cr)@[Fe(HB(pz)3)2]、NH2-MIL-101(Al)@[Fe(HB(pz)3)2]与[Fe(HB(pz)3)2]经多次转变后的颜色变化情况,实验结果表明,MOFs材料@[Fe(HB(pz)3)2]的复合物可应用到防伪包装材料之中。  相似文献   

10.
11.
12.
鲁浩  杨强  孔赟 《材料导报》2023,(4):170-182
随着水体环境中抗生素、内分泌干扰物及持久性有机物等大量新兴污染物的频繁检出,寻求高效、经济的污染物处理和治理技术迫在眉睫。金属有机框架(Metal organic frameworks, MOFs)材料是一类由金属离子或金属簇与有机配体结合的有机-无机杂化材料,具有孔隙率高、结构多样、孔径可调、配位点不饱和及功能可设计性强等特点,可广泛应用于有机污染物的吸附去除和氧化降解。本文综述了MOFs材料的合成方法及分类,阐述了其对水体中有机污染物的吸附和催化降解机理,探讨了温度、pH、MOFs浓度和离子强度等相关因素对MOFs材料去除污染物的影响,并对今后MOFs材料的研究方向进行了展望,以期为MOFs材料在环境污染修复领域的研究和应用提供理论基础。  相似文献   

13.
金属有机框架材料(MOFs)是由金属节点和有机配体组成的多孔晶体,在气体储存、催化降解、传感检测和医药抗菌等诸多领域受到广泛关注。在医药抗菌领域,MOFs不仅可作为良好的药物缓释载体,还兼具生物可降解性、抑制细菌活性等特性,因而成为新一代抗菌材料的研究热点。综述了MOFs的结构设计和特点,从MOFs作为抗菌剂和MOFs作为载体负载抗菌剂进行高效抗菌两个方面详细介绍了其在抗菌领域的应用。  相似文献   

14.
武凯莉  康永锋 《化工新型材料》2022,50(3):226-229+235
金属有机框架(MOFs)是一种重要的多孔无机-有机杂化材料,具有优异的物理化学特性。由于MOFs材料的合成受多种复杂因素的影响,从而导致不能有效控制MOFs材料的性质(如组成、形态和表面积),因此MOFs材料的可控合成对其应用具有重要意义。介绍了影响MOFs材料合成的主要因素,如金属离子、有机配体、反应体系的条件等。  相似文献   

15.
通过有机体系电化学沉积法制备了未掺杂及锰掺杂氧化镍薄膜,并通过SEM、EDS、紫外-可见分光光度计和电化学工作站对其形貌、成分、光学及电化学性能进行了研究。结果显示:薄膜由团聚颗粒构成,锰的掺入使团聚颗粒细化,随锰掺入量的增大,薄膜颗粒出现择优方向聚集,形成蠕虫状;锰掺杂还使薄膜的光学及电学性能得到改善,薄膜在550nm处的透光率差值由68%提高到93%,着色效率增至30.9mC·cm-2;电致变色可逆性得到明显改善,响应(消色/着色)时间有所减小。  相似文献   

16.
以硝酸银为银源、次磷酸钠为磷源、双氢胺为氮化碳前驱体,制备了磷银共掺杂氮化碳(P/Ag-CN)。通过X射线衍射、扫描电镜(SEM)、紫外-可见光分光光度计、荧光光谱、BET对样品进行了结构表征,通过光催化降解亚甲基蓝对其进行了光催化性能分析。结果表明:通过元素掺杂有效地改善了直接热缩聚法所得氮化碳比表面积小、光生电子-空穴复合率高的缺陷。与纯g-C3N4相比,P/Ag-CN的形貌由紧密堆积的层状结构转变为类似棉花糖的疏松结构,同时展示出更高的比表面积和更优异的光催化性能。当Ag掺杂量为2.5%、P掺杂量为3.0%时,银磷共掺杂g-C3N4的光催化性能最优,可达90.02%,其一阶反应速率常数分别是同等掺杂量时单掺杂样品的5.6倍和3.5倍,是纯g-C3N4的7.62倍。  相似文献   

17.
金属有机框架(MOF)和应力发光(ML)材料被认为是两种有前途的材料,并在诸多领域得到了广泛应用.若能将二者结合起来获得ML-MOF材料,则势必会拓展它们的应用范围.但目前对MLMOF的研究并不多,且其中的ML机制仍不明确.在本研究中,我们提出了一种通过在非中心对称SBD MOF中掺杂镧系离子来开发ML-MOF的策略,...  相似文献   

18.
环糊精金属有机框架材料(CD-MOFs)是一种绿色环保的新型金属有机框架材料,但由于其水稳定性差,在实际应用中受到了限制。通过交联CD-MOFs和柠檬酸(CA)来提高环糊精基MOFs的水溶液稳定性。研究制备了CA改性的CA-γ-CD-MOF复合材料,并作为吸附剂从水溶液中去除阳离子染料结晶紫。在15mg CA-γ-CD-MOF用量、20℃、pH 6和60mg/L初始结晶紫浓度下,CA-γ-CD-MOF对结晶紫的平衡吸附能力为79.86mg/g,相应的清除率达到99.83%。此外,CA-γ-CD-MOF在经过3次吸附解吸循环,吸附率仍达第一次的98%以上,表现出良好的再生能力。动力学和吸附等温线研究表明,吸附遵循拟二阶动力学,CA-γ-CD-MOF吸附结晶紫是一种自发的单层吸热过程。因此,CA-γ-CD-MOF是一种高效、绿色、可循环利用的吸附剂。  相似文献   

19.
以金属有机框架材料(ZIF-90)为固定载体,采用内部封装和表面物理吸附两种方法固定漆酶(LAC),分别制备出LAC@ZIF-90和LAC-ZIF-90复合材料,使用扫描电镜(SEM)、激光共聚焦显微镜(CLSM)、X射线衍射(XRD)、傅里叶红外变换光谱(FT-IR)以及荧光分析等手段分析漆酶固定前后的结构和性能,对比分析了游离漆酶和固定漆酶的使用稳定性,根据高效液相色谱(HPLC)研究了固定化漆酶对邻苯二酚的降解性能。结果表明:漆酶分子固定在ZIF-90的表面和内部,分子结构稳定。在最适当的pH值条件下,LAC-ZIF-90和LAC@ZIF-90震荡6 h对邻苯二酚的去除率分别为97%和19.4%。LAC-ZIF-90和LAC@ZIF-90经过5次重复使用后仍具有较高的活力,LAC-ZIF-90重复5次后对邻苯二酚的去除率仍高于78%。  相似文献   

20.
采用溶胶凝胶自燃烧法制备了Mn0.4Zn0.6-xCoxFe2O4铁氧体,研究了钴掺杂对其结构和磁性质的影响.将自燃烧法制备的粉末进行1,150℃烧结.利用X射线衍射仪对制备的粉末测试发现,Mn0.4Zn0.6-xCoxFe2O4系列铁氧体都具有尖晶石结构.利用VSM对铁氧体进行磁性测试,发现饱和磁化强度与晶格常数的变化规律一致,在钴含量为0.2时,都取得最大值.通过μi-T曲线发现,初始磁导率随着钴含量的增加而降低,居里温度是一个常数.而且,钴含量可以调节磁导率的温度稳定性,在钴含量为0.3时,磁导率具有优良的温度稳定性.基于铁氧体中离子分布的原理,阐明了钴掺杂对铁氧体磁导率温度稳定性的作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号