首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了改善Mg2Ni型合金的吸放氢动力学性能,用Cu部分替代合金中的Ni。用快淬工艺制备了纳米晶Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4)贮氢合金,用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试了合金的吸放氢动力学性能。结果表明,快淬态合金具有纳米晶结构,Cu替代Ni不改变合金的主相Mg2Ni,但导致形成第二相Mg2Cu。随Cu含量的增加,合金的吸氢量先增加而后减小,但合金的放氢量随Cu含量的增加而单调增加。快淬显著提高合金的吸放氢量并改善合金的吸放氢动力学。  相似文献   

2.
B对Mg76-xTi12Fe8Ni4Bx (x=0, 1, 2, 3, 4)合金储氢性能的影响   总被引:1,自引:0,他引:1  
利用机械合金化方法制备了Mg76-xTi12FesNi4Bx(x=0,1,2,3,4)合金并对其储氢性能进行了系统的研究.在Mg76-xTi12FesNi4Bx(x=0,1,2,3,4)合金中,Mg2Ni和NiTi是主要的合金相.B的加入使合金的非晶化程度提高,也降低了合金的吸放氢温度和滞后效应,但吸放氢平台有所上升,合金的吸氢量以及吸放氢速率均有下降.  相似文献   

3.
为了改善Mg2Ni型合金的贮氢性能,用Mn部分替代合金中的Ni,并采用快淬工艺制备Mg20Ni10-xMnx(x=0, 1, 2, 3, 4)合金。用XRD和HRTEM分析了铸态及快淬合金的微观结构,用自动控制Sieverts设备测试合金的吸放氢动力学,并采用程控电池测试仪测试合金的电化学性能。结果表明,当淬速为20 m/s时,快淬(x=4)合金中出现非晶相,且非晶化程度随淬速的增加而增加。合金的吸放氢量及动力学性能随淬速的增加而增加。此外,快淬显著地改善了合金的电化学性能,包括放电容量及含Mn合金的循环稳定性。  相似文献   

4.
研究了机械球磨La1.8Ca0.2Mg14Ni3+x%Ti(质量分数,下同)(x=0,5,10)合金的微结构和储氢性能。气态吸放氢研究表明。加入钛粉球磨能有效提高合金的活化性能、储氢容量和吸放氢速率。铸态合金经过6次活化后,在613K时放氢量为4.12%(质量分数,下同)。加Ti球磨改性10h后,随着X增加,合金经过2次~3次循环基本完全活化。吸放氢性能也相应提高。Ti含量在x=0,5,10时合金在613K的放氢量分别为4.69%,4.80%,4.83%:当x=10时合金在373K的吸氢量达到3%以上,在600K经过2min就能达到4.81%(为最大吸氢量的97%)。微结构分析表明。具有表面催化活性的Ti粉与合金基体表面进行复合,并使合金发生部分非晶转变,能有效改善La1.8Ca0.2Mg14Ni3合金的储氢性能。  相似文献   

5.
从晶体结构、吸放氢性能和抗粉化性能的角度研究了La1-xYxNi5-yAly (x=0.6,0.7;y=0.1,0.2)金属氢化物合金用于高气压氢压缩机的可行性.XRD分析表明,合金都为CaCu5型六方结构,晶胞体积随着Y含量的增加而减小,随着Al含量的增加而变大.采用恒温体积法在20、30和40℃的实验条件下,对合金的吸放氢PCT曲线和吸氢动力学曲线进行了测定.结果表明,Y和Al能够有效地调节合金的吸放氢平台压,其中Y使合金的平台压升高,Al使合金的平台压降低,两种元素对LaNis基合金的其它储氢性能没有明显的负面影响.分析表明,这些合金能够以“合金对”的形式应用于双级金属氢化物压缩机中,将室温下的2 MPa的低压氢增压为35~40 MPa的高压氢,放氢温度为135~155℃.  相似文献   

6.
为了改善Mg2Ni型合金的贮氢性能,采用Co部分替代合金中的Ni以及快淬工艺制备了纳米晶和非晶态Mg20Ni10-xCox(x=0,1,2,3,4)贮氢合金。用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构,并测试了合金的气态吸/放氢动力学及电化学贮氢性能。结果表明,在快淬无Co合金中没有形成非晶相,但快淬含Co合金中形成一定量的非晶相。Co替代Ni及快淬处理显著地改善了合金的气态吸放氢性能。同时,Co替代Ni也显著地提高了快淬态合金的放电容量和电化学循环稳定性。  相似文献   

7.
为了改善Mg2Ni型合金气态及电化学贮氢动力学性能,用Cu部分替代合金中的Ni,用快淬技术制备Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4)合金,用XRD、SEM、HRTEM分析铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试合金的气态贮氢动力学性能,用程控电池测试仪测试合金的电化学贮氢动力学.结果表明,所有快淬态合金均具有纳米晶结构,无非晶相形成.Cu替代Ni不改变合金的主相Mg2Ni,但使合金的晶粒显著细化.快淬处理及Cu替代均显著地提高合金的气态及电化学贮氢动力学性能.当淬速从0m/s(铸态被定义为淬速0 m/s)增加到30 m/s时,Mg2Ni0.8Cu0.3合金在5 min内的吸氢饱和率从57.2%增加到92.87%,20 min的放氢率从21.6%增加到49.6%,高倍率放电能力(HRD)从40.6%增加到73.1%,氢扩散系数(D)从1.02×10-11 cm2/s增加到4.08×10 -11 cm2/s,极限电流密度(IL)从113.0 mA/g增加到715.3 mA/g.  相似文献   

8.
用快淬工艺制备了Mg2Ni型合金,其名义成分为Mg2Ni1-xCox(x=0,0.1,0.2,0.3,0.4)。以XRD、SEM、TEM分析了铸态及快淬合金的结构。用程控模拟电池测试仪测试了合金的电化学贮氢动力学。用电位跃迁法计算了氢在合金中的扩散系数。用电化学工作站测试了合金的电化学交流阻抗谱(EIS)和Tafel极化曲线。结果表明,快淬态无Co合金具有典型的纳米晶结构,而Co含量为0.4的快淬态合金具有纳米晶/非晶结构,表明Co替代Ni可以提高Mg2Ni型合金的非晶形成能力,且快淬态合金的非晶化程度随Co替代量的增加而增加。Co替代Ni显著地提高了合金电化学贮氢动力学。当Co含量从0增加到0.4时,淬速为25m/s的快淬态合金的高倍率放电能力(HRD)从65.3%增加到75.3%,氢扩撒系数(D)从2.22cm2/s增加到3.34cm2/s,极限电流密度(IL)从247.8mA/g增加到712.4mA/g。  相似文献   

9.
研究了Co和Cu取代Ni以及磁热处理对La0.67Mg0.33Ni3-xMx(M=Co,Cu)(x=0,0.5)合金吸放氢反应热力学和动力学性能的影响。结果表明,Ni被Co和Cu元素部分替代后,合金的吸放氢量增大,放氢温度降低,吸放氢特征时间(tc)减小,吸放氢过程中的扩散活化能降低。磁热处理明显地提高了3种铸态合金的吸氢量,增大了吸放氢平台宽度,改善了合金的吸放氢动力学性能,其中磁热处理对La0.67Mg0.33Ni2.5Co0.5合金改性效果最好,吸放氢量分别为1.40%和1.32%(质量分数,下同),放氢峰所对应的温度为77.8℃,吸放氢特征时间"tc"为91.4和379.3s,吸放氢扩散活化能分别为16.3和23.3kJ/mol。  相似文献   

10.
Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively.  相似文献   

11.
采用三步感应熔炼法制备了La(1-x)MgxNi4.25Al0.75 (x=0.0,0.1,0.2,0.3) 储氢合金,对该系列合金的晶体结构和储氢性能方面进行了研究。晶体结构和相分析结果表明,当x=0.0和0.1时,合金由单一的LaNi4Al相组成;而x=0.2和0.3时,合金由LaNi4Al相, (La,Mg)Ni3相和AlNi3相构成。随着Mg含量x从0.2增至0.3时,合金的第二相丰度和吸/放氢平衡压明显升高,同时储氢容量减小。研究发现,当Mg添加量x=0.1时,合金除具有良好的储氢容量和低平台压外,其吸氢动力学性能更好。  相似文献   

12.
为了改善Mg2Ni型合金的贮氢动力学性能,用Co部分替代合金中的Ni,用快淬技术制备了Mg2Ni1?xCox(x=0,0.1,0.2,0.3,0.4)贮氢合金。用XRD、HRTEM表征了快淬态合金的微观结构,用自动控制的Sieverts设备测试了合金的吸放氢动力学性能,用程控电池测试仪测定了合金薄带的电化学贮氢动力学。结果表明:Co替代Ni提高了Mg2Ni型合金的非晶形成能力,合金的非晶化程度随着Co含量的增加而增加。此外,Co替代Ni显著地改善了合金的贮氢动力学,当Co含量从0增加到0.4时,快淬态(15m/s)合金在5min内的吸氢饱和率从81.2%增加到84.9%,20min的放氢率从17.60%增加到64.79%,氢扩散系数从1.07×10-11cm2/s增加到2.79×10?11cm2/s,极限电流密度从46.7mA/g增加到191.7mA/g。  相似文献   

13.
The crystal structures and hydrogenation behavior of (La1-xMgx)3Al (x = 0.1, 0.2, 0.3, and 0.4) alloys were investigated. It was found that the alloys with x = 0.1 and 0.2 consist of La(Mg,Al), La, and a novel phase. The novel phase was determined as La2Al. It is shown that the amount of La2Al decreases as the Mg content increases. When x increases to 0.3, only La(Mg,Al) and a small amount of La2Al exist. When x is 0.4, La2Al phase disappears and the alloy contains both La(Mg,Al) and La(Al,Mg)2 Laves phase. The (Lao.9MgoA)3Al and (La0.TMg0.3)3Al alloys can be decomposed into LaH3, MgH2, and La2Al5 by the absorption of hydrogen at 473 K.  相似文献   

14.
La0.7Mg0.3Ni3.4-xCo0.6Mnx(x=0.0~0.5)合金主要由(La,Mg)Ni3相和LaNi5相构成,各相的晶胞参数和晶胞体积均随Mn含量的增加而增大。随Mn含量的增加,合金的放氢平衡压力从0.128MPa(x=0.0)下降到0.067MPa(x=0.5),导致最大吸氢量从x=0.0时的1.19%(质量分数,下同)逐渐增加到x=0.4时的1.38%。合金的最大放电容量随Mn含量的增加首先从330.4mAh/g(x=0.0)增加到360.6mAh/g(x=0.4),然后减小到346.9mAh/g(x=0.5)。随Mn替代量的增加,合金电极的高倍率放电能力先改善后降低,合金电极的表面反应阻抗先降低后升高,而氢的扩散系数先增加后减小,说明合金的电化学动力学性能首先提高然后降低。  相似文献   

15.
纳米晶和非晶Mg20-xLaxNi10(x=0-6)贮氢合金的贮氢行为   总被引:1,自引:0,他引:1  
用快淬技术制备了Mg2Ni型贮氢合金,合金的名义成分为Mg20-xLaxNi10 (x = 0, 2, 4, 6)。用XRD、SEM、HRTEM分析了合金的微观结构。发现不含La的快淬合金中没有非晶相,但含La快淬合金中显示以非晶相为主。当La含量x≤2时,铸态合金的主相为Mg2Ni相,但随着La含量的进一步增加,铸态合金的主相改变为(La,Mg)Ni3+LaMg3相。应用Sieverts设备研究了铸态及快淬态合金的吸放氢量及动力学,结果表明,x=2的合金吸放氢量及动力学随淬速的增加而增加,但对于x=6的合金,结果是相反的。电化学测试结果表明,x=2合金的放电容量随淬速的增加而增加,而对于x=6合金,结果也是相反的。快淬显著地提高了x=2, 6合金的循环稳定性  相似文献   

16.
为了改善 La-Mg-Ni 系 A2B7型电极合金的电化学循环稳定性,用 Pr 部分替代合金中的 La,并用熔体快淬工艺制备了La0.75-xPrxMg0.25Ni3.2Co0.2Al0.1(x = 0, 0.1, 0.2, 0.3, 0.4)电极合金。用 XRD、SEM、TEM 分析了铸态及快淬态合金的微观结构。结果表明,铸态及快淬态合金均具有多相结构,包括 2 个主相(La,Mg)Ni3及 LaNi5和 1 个残余相 LaNi2。熔体快淬导致 LaNi5相增加而(La,Mg)Ni3相减少。电化学测试结果表明,熔体快淬显著地提高合金的电化学循环稳定性。当淬速从 0 m/s (铸态被定义为淬速 0 m/s)增加到 20 m/s 时,x=0 合金 100 次充放循环后的容量保持率从 65.32%增加到 73.97%,x=0.4 合金的容量保持率从 79.36%增加到 93.08%。  相似文献   

17.
系统研究了贮氢电极合金La0.7Mg0.3Ni2.65Co0.75Mn0.1Al0.2B,x(x=0,0.02,0.04,0.08)的微结构与电化学性能.XRD结果显示,所有合金均由(La,Mg)Ni3相与LaNi5相组成,B含量的增加导致(La,Mg)Ni,3相的丰度不断增加,相应地LaNi5相的丰度逐渐下降.此外,合金的晶格参数与晶胞体积均随B含量的增加而减小.电化学测试分析表明,B的添加可以显著改善合金电极的高倍率放电性能,当B含量为0.04时达到最佳.微量B的加入对合金的循环稳定性能与活化性能影响很小,但降低合金电极的最大放电容量.此外还采用线性极化与阳极极化对合金电极的动力学性能进行了进一步研究.  相似文献   

18.
研究了Mg50 Ni50 -xTix 合金的非晶形成能力与非晶合金电极的吸放氢性能。结果表明 :在Mg50 Ni50 -xTix合金中 ,当Ti替代Ni元素的量低于 1 5% (摩尔分数 )时 ,机械合金化能够得到几乎单一的非晶态合金 ;用Ti替代Ni形成的三元非晶合金能降低镁镍合金的平衡氢压 ;少量的Ti替代能改善合金的电化学吸放氢容量 ,使合金电极的吸放氢循环稳定性得到提高。这被认为是在三元合金中钛元素减缓了合金中镁元素的氧化腐蚀进程所致。  相似文献   

19.
含锆镁基储氢合金的合成及其电化学性能   总被引:3,自引:0,他引:3  
用固相扩散法合成了Mg2-xZrxNi (x=0, 0.2, 0.3, 0.4, 0.5, 0.6)系列合金. XRD结构分析表明 主相仍为Mg2Ni; Zr替代Mg使合金的微晶结构发生了改变, 趋于非晶化; 添加Zr的合金的容量比由扩散法合成的合金的容量有所提高; 合金中添加Zr, 提高了电极的放电容量, 增大了放电平台; 特别是Zr 对六方晶系Mg2Ni合金结构中Mg的部分取代大幅度提高了电极的循环寿命, 未经任何处理的 Mg1.4Zr0.6Ni合金电极经25个循环后, 放电容量仅衰减4.11%, 表明添加Zr对提高合金的循环寿命具有重要的作用.  相似文献   

20.
利用高频熔炼方法制备了La1+xMg2-xNi9(x=0,0.5,1.0,1.5)系列合金,并对其进行了XRD分析和储氢容量及电化学性能测定。结果表明:随着La含量增大,合金中LaNi5和(La,Mg)Ni3相转变为LaNi3相,且Mg2Ni相出现,晶胞体积也增大,合金的储氢容量和电化学性能提高;当x=1.5时,Mg2Ni相消失,合金的储氢性能有所下降。当x=1.0时,即La2MgNi9合金具有较好的储氢容量及电化学容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号