首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deuterium and oxygen-18 (18O) have been measured in deep thermal, shallow thermal and non-thermal water samples collected at various times between 1982 and 1989 from the Meager Creek area, with the aim of assessing the origin of the thermal waters. The isotopic composition of the reservoir waters (δ18O = −13‰ and δD = −114.8‰) was calculated from data on post-flash deep thermal waters, using a two-stage steam loss model. The reservoir composition shows an oxygen shift of 2.4‰ relative to the local meteoric water line. The composition of the recharge, obtained by removing the oxygen shift, is isotopically heavier than the average local meteoric waters, suggesting that the recharge may be from an area to the west of Mt Meager where isotopically heavier ground-waters are likely to be found. The small δ18O shift of the deep high-temperature waters is indicative of dominance of fracture-related permeability in the reservoir. Analysis of the chemistry and the temperature of the waters from hot springs and shallow thermal wells suggests that these waters have evolved from the deep geothermal waters through dilution by meteoric waters and about 40°C adiabatic cooling (steam loss).  相似文献   

2.
Geothermal waters from the Tertiary aquifers located at 1000–3000 m beneath Xi’an city, Shaanxi Province, China, show unique isotopic composition as compared to local groundwaters from shallower Quaternary aquifers. Positive oxygen shifts of as much as 8‰ VSMOW are observed, while the corresponding δ2H values remain essentially constant at about −80‰ VSMOW, which is significantly different from those of waters in the Quaternary aquifers with a mean δ2H value of −60‰ VSMOW. The strong 18O shift is a result of isotope exchange between geothermal water and carbonate minerals such as calcite over a residence time of several thousand years up to 30,000 years, based on 14C dating. A comparison of the isotopic composition of geothermal waters with neighbouring groundwater units on both sides of the Guanzhong Basin indicates that the geothermal reservoirs are recharged by rain that falls on the northern slope of the Qinling Mountains, south of the Xi’an geothermal field, but not from the North Mountains to the north of the field. Based on chemical geothermometers the highest temperature estimated for the Tertiary aquifers of the Xi’an area is around 130 °C.  相似文献   

3.
Stable isotopic compositions of meteoric and geothermal waters indicate that the Palinpinon geothermal system of Southern Negros is fed by a parent water that originated from a mixture of local meteoric (80%) and magmatic (20%) waters. The meteoric water has an isotopic concentration of −8.5‰ and −54‰ in 18O and 2H, respectively, which corresponds to an average infiltration altitude of about 1000 m above sea level. With exploitation of the system and injection of wastewaters to the reservoir, the stable isotopic composition became heavier due to significant mixing of geothermal fluids with injection waters. Incursion of cooler meteoric waters, which is confirmed by the presence of tritium, also leads to the formation of acid-sulfate waters. Stable isotopes are effective as “natural tracers” to determine the origin and mixing of different fluids in the reservoir.  相似文献   

4.
On the basis of isotopic analyses of steam and water discharges from the Wairakei, El Tatio and The Geysers geothermal areas, underground steam separation from the rising geothermal fluid appears to be adequately described in terms of a single-step process at temperatures of around 230°C. Absorption of this steam into nearly stagnant pools gives rise to the formation of isotopically enriched waters with compositions following a line with slope σ = εD / (Δrw + ε18Oε18O .230°C), where εD and ε18O are the effective kinetic isotope fractionation factors (50‰ and 16‰) for steam heated pools, ε18O .230°C is the equilibrium fractionation factor for oxygen-18 at 230°C (2‰) and δrw is the difference in 18O-content of deep chloride and local groundwater (oxygen shift) respectively. The sulfate content of these pools is a function of the proportion of steam absorbed and its H2S-content.  相似文献   

5.
V. Araa  C. Panichi 《Geothermics》1974,3(4):142-145
The isotopic analysis of the steam samples collected in the geothermal area of Lanzarote show that the values of δD are practically constant, and those of δ18O range in a shift of 17‰ reaching a maximum of +14.7‰ versus SMOW, this last value being the highest found in steam samples.This composition can be explained as a consequence of the isotopic exchange at high temperature between limestones and a mixture of marine and local meteoric waters.This interpretation agrees with previous geological and geophysical studies which consider that a promising geothermal field could exist in Lanzarote.  相似文献   

6.
The origin of carbon-bearing compounds (CO2, CH4, C2–C4 saturated hydrocarbons) and helium in the geothermal fluid of Larderello is investigated by means of the variations in concentration and isotopic composition. The CO2 (δ13C from −1.4 to −7.1‰ versus V-PDB) is mainly of crustal origin. The carbon isotopes of methane (δ13C from −20.9 to −31.7‰) and other hydrocarbons indicate a complex thermogenic origin. The temperatures obtained with the CH4–CO2 isotope geothermometer are in rough agreement with those observed in deeper geothermal wells. The CH4/C2H6 ratios show a tendency towards partial equilibrium with increasing temperature. He isotopes (R/RA from 0.5 to 3) indicate that although the major part of helium derives from crustal sources, a significant fraction of mantle helium is also present. Helium contamination by air, deducted from He/Ne ratios, is generally negligible.  相似文献   

7.
Fluids in the Greater Tongonan geothermal system exhibit a large positive 18 O shift from the Leyte meteoric water line. However, there is also a significant shift in 2H. The δ2H−δ18O plot shows that the geothermal fluids may be derived by the mixing of meteoric water (δ18O = −7‰ and δ2H = −41‰) with local magmatic water (δ18O = 10 ± 2‰ and δ2H = −20 ± 10‰). The most enriched water in the Greater Tongonan system, in terms of δ18O, δ2H and Cl, is comprised of approximately 40% magmatic water. Baseline isotope results support a hydrogeochemical model in which there is increasing meteoric water dilution to the southeast, from Mahiao to Sambaloran and towards Malitbog. The Cl−δ18O plot confirms that the geothermal fluid in Mahanagdong, further southeast, is distinct from that of the Mahiao-Sambaloran-Malitbog system.  相似文献   

8.
A schematic model showing the sources of hot waters being discharged at the surface in the Kuju-Iwoyama of the Kuju volcano has been developed. Based on the isotopic characteristics of these fluids it is inferred that deep magmatic fluid mixes with thermal waters derived from rainwater in a shallow geothermal reservoir, and with local groundwaters in a deeper reservoir. These thermal waters feed hot springs that discharge waters with Cl/SO4 ratios that differ from that of the fumaroles on Kuju-Iwoyama, due to the addition of SO42− ions produced by the decomposition of native sulfur and mixing with magmatic fluid of high Cl content.  相似文献   

9.
G. Dongarr  S. Hauser 《Geothermics》1982,11(3):193-200
Samples of some thermal springs from Sicily have been analysed for the isotopic composition of sulphur-bearing species. The values of δ34S(SO42− (range: +7.3, +31.7‰), δ34S(H2S) (range: −12.2, +27.8), δ34S(S°) (range: +1.9, +24.5) and δ18O(SO42−) (range: −2.5, +23.9) obtained show such a remarkable variability in data as to hypothesize different genetic processes concerning these species.Furthermore, from the available experimental data, the relationship between the isotopic composition of the sulphur in the dissolved sulphate and in the associated hydrogen sulphide (ΔSO42− - H2S = 25 – 30‰) seems to indicate the bacterial reduction of sulphate ion as one of the processes most significantly influencing the isotopic geochemistry of sulphur.  相似文献   

10.
The Cerro Pando geothermal area in Chiriqui Province is situated just to the south of the continental divide in western Panama. Three groups of thermal springs are associated with lineations in a complex of late Tertiary and Quaternary extrusives. Spring temperatures reach maximum values of 66°C at Los Pozos, 67°C at Cotito and 41°C at Catalina; flow-rates are low, ranging up to 1.5 l/s. However, total heat output is estimated at around 7 MW from calculations incorporating measured spring discharges with river-bed discharges inferred from stream conductivity anomalies. In all cases the spring hydrochemistries become of a more dominantly Na-Cl character as mineralization increases; the highest salinities are found in samples from test boreholes in which 4500 mg/l Cl has been measured. 18O/16O and 2H/1H data for all thermal springs are roughly colinear, plotting on the δ-diagram with a slope around 3.6 and intersecting the meteoric water line within the compositional range of local surface water. Moreover, δ18O data are found to correlate with Cl concentrations, although separate linear trends represent the Los Pozos/Cotito and the Catalina groups of springs. These data are interpreted as indicating that deep thermal ground water feeds the thermal spring systems, with differing isotopic compositions and/or salinities in the Los Pozos/Cotito and Catalina groups. These end-member compositions have evolved by sub-surface steam loss, possibly without any δ 14O shift due to water - rock exchange. The observed spring compositions are all mixtures between the deep thermal and shallow cool end-member ground waters. The importance of resolving mixing relationships before applying geothermometric calculations is illustrated.  相似文献   

11.
We propose here a new geothermometer for natural waters. Analyses from many explored geothermal fields allow us to define two empirical thermometric relationships.One is for waters of low to moderate salinity (Cl< 0·3 M) log Na/Li = 1000/T −0·38 and one for marine waters and brines (Cl > 0·3 M) log Na/Li = 1195/T + 0·38 These relationships, which at present are not well understood, result mainly from the increase of Li concentrations in waters with temperature.Equation (a) proved to be adequate for spring waters from mostly known geologic origin; this is an important feature in geochemical surveys for geothermal prospecting.Furthermore, when comparison between springs and drillhole chemistry of a given geothermal field is possible, the Na/Li geothermometer gives more reliable temperature estimates from the spring compositions than do classical geothermometers.  相似文献   

12.
Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350–400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97°C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8–10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are 180°C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are 310°C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238°C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300°C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos area in the andesitic highland and consists of a lower-temperature (150–190°C) reservoir with a large natural discharge that feeds the Colmenares hot springs.  相似文献   

13.
Hydrogeochemistry and geothermal characteristics of the Tertiary White Lake basin are described in order to provide constraints on the hydrogeology and thermal regime of the basin. The basin can be divided into three flow subsystems on the basis of chemical and isotopic variations. The groundwaters evolve chemically from young Ca–Mg–HCO3 type waters in the shallow surficial sediments to Na-dominated waters in the deeper intermediate system. Surface waters and shallow groundwaters collected from wells completed in overburden have undergone extensive evaporation as evidenced by their enriched δ18O and δ2H composition. Minor evaporation identified in the isotope composition of groundwater from domestic wells completed in bedrock, as well as from springs, suggests a local to intermediate origin for these waters, and perhaps mixing with shallow evaporative waters. In contrast, the uniform isotope signatures of deep basin waters measured both spatially and vertically suggest recharge at higher elevations, and a much deeper circulation system that is essentially isolated from the shallow subsurface. Chemical geothermometry indicates that spring waters and bedrock well waters have equilibrated at temperatures of less than 20 and 60°C, respectively. Groundwaters encountered by deep diamond drill holes, with equilibration temperatures of less than 80°C, are representative of intermediate flow systems, and may serve to modify the heat flow regime in the basin. Regional groundwater flow within the basin is complex due to numerous faults that exert a strong influence on fluid circulation patterns. Transport of heat in the subsurface, which has resulted in variations in the measured thermal gradients across the basin, occurs either at depths greater than those investigated in this study or has been significantly influenced by the circulation of cooler groundwater in the central part of the basin.  相似文献   

14.
The isotopic compositions of the waters discharged from Parbati Valley geothermal areas indicate a higher altitude meteoric origin, with discharge temperatures reflecting variations in the depth of penetration of the waters to levels heated by the existence of a ‘normal’ geothermal gradient. On the basis of mixing models involving silica, tritium, discharge temperatures and chloride contents, deep equilibration temperatures of 120–140°C were obtained for Manikaran, possibly reaching 160°C at even greater depth. Geothermometers based on sulfate-water 18O exchange and gas reactions point to similar temperatures. Exceptionally high helium contents of the discharges correspond to apparent crustal residence times of the waters in the order of 10–100 Ma; relative nitrogen-argon contents support a largely meteoric origin of the waters with a possible fossil brine, but no detectable magmatic component.  相似文献   

15.
Techniques based on the variations in composition of water, gas and stable isotopes in the liquid and gas phases of the geothermal fluids have been applied for some time now in the major geothermal fields and are now also used regularly in geothermal exploration. There are numerous processes capable of modifying isotopic composition after infiltration of water from the surface, such as water-rock exchanges, formation of secondary minerals and exchange with the gaseous phase (CO2 and H2S). During ascent to the surface, the two main processes are steam separation and dilution and mixing with shallower waters. This paper also deals with the chemical characteristics of the waters, their classification and the water-rock interaction producing hydrothermal alteration. During exploration the chemical and isotopic geothermometers represent a unique method for investigating the deep system. The choice of geothermometer and interpretation of geothermometric data are two crucial steps in geothermal exploration. Finally, the paper discusses the geochemistry of gas mixtures, especially the origin of the gas species and the main chemical reactions that produce semi-empirical geothermometers and some recent non-empirical geothermometers based on models of a two-phase system in the reservoir. Gas-geothermometers can be developed to calculate the reservoir temperature for natural manifestations.  相似文献   

16.
In the East Eifel volcanic area 70 mineral and thermomineral waters have been sampled and analysed with respect to their chemical and isotopic composition. The isotopic composition shows that all waters are of meteoric origin. Distinct anomalies of SiO2 contents and Na+/K+ ratios were found around the Lake Laach caldera. Manuring and mixing processes with a deep circulating brine could be excluded as reasons for the observed shift of Na+/K+ ratios. A final connection between the observed anomalies in spring water composition and a low geothermal anomaly is not possible because no information is available about the rock in contact with the water. The attempt to calculate geotemperatures failed because of the high CO2 contents of the waters. But the results show that the subsurface temperatures with which the waters come into contact are certainly below 100°C.  相似文献   

17.
Chemical and isotope geothermometers, i.e. the Na–K, K–Mg, quartz and δ18O(SO4–H2O), have been applied to estimate the reservoir temperature of the thermal springs in the northern areas of Pakistan. The chemical types of the thermal waters and the effects of mixing of shallow cold water with the thermal end-members are discussed. These waters are neutral to slightly alkaline and have low dissolved contents. Sodium is the dominant cation in almost all the cases. In terms of anions, the hot waters of Budelas are of the SO4 type, those of Tatta Pani are of mixed character (SO4 and HCO3), and the waters from the remaining areas show HCO3 domination. An absence of tritium in Tatta Pani and Tato thermal springs indicates that they do not have any contribution of shallow young water. In the case of the Murtazabad springs, the wide range of tritium concentrations, negative correlations with surface temperature and Cl, and positive correlation between Na and Cl show that the shallow cold groundwater is mixing with thermal water in different proportions. For the mixed water of Murtazabad thermal springs, ‘isochemical modelling’ using the Na–K, K–Mg and quartz geothermometers indicates an equilibrium temperature in the range 185–200 °C. The δ18O(SO4–H2O) geothermometer gives relatively low temperatures for three springs, whereas two samples are close to the 185–200 °C temperature interval. The reservoir temperatures of Tatta Pani springs (100–120 °C), determined by Na–K and quartz geothermometers, are in good agreement. The δ18O(SO4–H2O) geothermometer gives a relatively higher range (140–150 °C) for most of the Tatta Pani springs. For Tato spring, the isotope and chemical geothermometers (except for the K–Mg) agree on an equilibrium temperature of about 170 °C. Reservoir temperatures of the remaining minor fields are not conclusive due to the lack of sufficient data.  相似文献   

18.
Sixty-five water samples and seven associated gas samples have been collected on Lesbos island. The lithology and structural setting have resulted in two main types of hydrological circulation: a shallow circulation hosting low-salinity cold waters and a deeper one, hosting high-salinity hot waters that often emerge in thermal springs near the coast. The cold waters are characterized by Ca(Mg)-HCO3(SO4) composition, while the thermal waters generally have an Na-Cl composition. The chemical features of the former can be explained by their circulation in the ophiolite-bearing phyllitic basement and volcanic rocks. Waters circulating in the ultramafic layers of the basement are richer in Mg than the waters whose circulation is mainly within marble levels or volcanic rocks. The Na-Cl thermal waters are characterized by salinities ranging from 1910 to 35,700 mg/kg. As indicated by previous hydrogeochemical and isotopic studies, the Na-Cl composition of the thermal waters on Lesbos is the result of mixing between shallow meteoric waters and marine waters. While interacting with the minerals of the geothermal reservoir, the saline waters retain the Na/Cl sea water ratio but become enriched in Ca2+ and depleted in Mg2+ with respect to sea water.Processes of hydrothermal alteration at depth are activated by a gas phase enriched in CO2, which reaches the geothermal reservoir by rising along the deep fractures of the basement. Thermodynamic calculations based on hydrothermal alteration processes occurring at the estimated temperatures of the geothermal reservoir (about 120 °C) indicate that the thermal waters of Lesbos are in equilibrium with talc and dolomite.  相似文献   

19.
The Efteni and Derdin geothermal areas are located in northwestern Turkey. Relatively low-temperature springs emerge from the Duzce Fault, a normal-component-dominated fault segment of the North Anatolian Fault System. The thermal waters of the Efteni and Derdin Springs show distinct geochemical and isotopic characteristics since they originate from different geothermal reservoirs and reflect the effects of different water–rock interaction processes. Geothermometry revealed higher reservoir temperatures for the Efteni system, however a strong δ18O shift, interpreted as being the result of isotopic exchange at high temperatures, was observed in the Derdin system. Hydrogeological and geochemical techniques are applied to identify recharge mechanisms, water–rock interaction processes and to construct conceptual models of these geothermal systems.  相似文献   

20.
The Cordón Caulle geothermal system is located in a NW-trending volcano-tectonic depression of the Southern Andean Volcanic Zone of Chile. Outflows of low chloride water were previously interpreted as the surface expression of a shallow steam-heated aquifer, with subsurface temperatures of 150–170 °C. Gas data from fumaroles and hot springs have been used to assess the nature and temperature of the deeper, underlying geothermal reservoir. Fumaroles at the northeastern border of Cordón Caulle have 3He/4He ratios typical of subduction margins (6–7 RA) and N2/Ar ratios of about 40, indicating deep convection of air-saturated groundwater. Fumaroles at the southwestern border have N2/Ar ratios >300, suggesting the presence of a deep volcanic component. Gas ratios of fumarole discharges yield equilibration temperatures >300 °C, whereas those of hot spring waters suggest temperatures of about 160 °C. Based on these data, and comparisons with well documented liquid and vapor-dominated geothermal systems, a model is proposed of a boiling liquid-dominated geothermal system overlain by a secondary steam-heated aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号