首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fracture toughness of weft-knitted fabric composites   总被引:4,自引:0,他引:4  
The mode I inter-laminar fracture toughness of advanced knitted textile composites was investigated. Two complex weft-knitted glass fabrics were selected for the study: a triple rib knit and a Milano knit were impregnated with a tough epoxy resin and tested using a double cantilever beam geometry. For both knitted composites, the influence of the growth direction was studied by investigating crack propagation in both the wale and course directions. The fracture toughness was quantified by determining the critical strain energy release rate (GIC) using the modified beam theory. The specimens had to be stiffened with layers of glass woven composites added on top and bottom of the beams. This was necessary in order to avoid plastic deformation of the beams and crack deviation out of the inter-laminar plane. The results clearly showed that knitted fabric composites have exceptional inter-laminar fracture toughness properties, namely, more than 7000 J/m2. The origin of the high GIC values, which are superior to woven or UD laminates, lies in the very complex fabric architecture. The three-dimensional loop structure induces various energy consuming mechanisms, which do not occur in other composites. Toughening mechanisms such as crack branching, friction, yarn bridging and breakage were identified using scanning electron microscopy.  相似文献   

2.
One of the apparent advantages of sandwich structures is that after the core is made, the sandwich is produced in one process by resin transfer molding (RTM) and no adhesive is used between the core and skins. The bond between the core and skins is therefore likely to depend upon the core material, the type of matrix and the core surface roughness. This is of great importance, because the stiffness of the sandwich structure is likely to be reduced by even partial delamination of the core and skins. The objective of this study was to ascertain the effects of manufacturing parameters such as injection pressure, mold temperature, core thickness and core surface roughness on skin/core adhesion using the direct tensile adhesion and peel test methods. Polyurethane foam was used as the core material throughout the work. The major objective was to examine different surface treatment methods by which the strength of the skin-core bond could be improved. The influence of the core surface roughness on the adhesive fracture energy and the delamination between core and skin were also measured. The fracture energy release rate equation was used as the basis for comparison and for measurements of the adhesion. For this purpose a double-cantilever beam was used to characterize the delamination. Critical energy release rate (GIC) and fracture toughness (KIC) were calculated using several alternative methods based on linear elastic fracture mechanics.  相似文献   

3.
Nano-hydroxyapatite/poly(l-lactic acid) (nano-HA/PLLA) composites with uniform HA distribution and good mechanical performance were fabricated by a modified in situ precipitation method, using Ca(OH)2 and H3PO4 as precursors for the synthesis of HA phase. This method has solved the aggregation problem of the nano-sized particles in the polymer matrix. The X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy were used to characterize the phase composition, chemical interactions and morphology of the composites, while the mechanical properties were determined by compressive measurements. The results show that the rod-like nano-HA particles synthesized by this method were uniformly distributed in the PLLA matrix. The compressive strength and Young’s modulus of the composites were greatly enhanced and reached the values of 155 MPa and 3.6 GPa at 20 wt% HA content, respectively, which are much higher than those of the reference samples fabricated by direct mixing of PLLA with nano-HA particles. This supports the potential of these composites for applications in bone tissue engineering and load bearing bone defects repair.  相似文献   

4.
为考察介孔纳米羟基磷灰石(MHA)/左旋聚乳酸(PLLA)复合材料的性能,以十六烷基三甲基溴化铵(CTAB)为模板合成MHA,采用溶液相分离结合粒子沥滤法制备了不同纳米粒子含量的MHA/PLLA多孔支架复合材料,考察了其抗压缩性能和淬断面微观结构。采用溶液浇注法制备了MHA/PLLA复合膜,并对其拉伸性能和拉伸断面微观结构进行了研究。FTIR、XRD、TEM和氮气吸附测试等结果显示:合成的MHA具有典型的晶体结构、介孔结构和较高的比表面积。力学测试结果显示:在发生10%压缩形变时,填料含量为1%、5%和10%的MHA/PLLA多孔支架复合材料的抗压缩强度随填料含量增加而提高,与相应含量的纳米羟基磷灰石(HA)/PLLA多孔支架复合材料相比,分别提高了约37.0%、67.7%和144.7%。在填料含量为5%和10%时,MHA/PLLA复合膜的拉伸强度较HA/PLLA复合膜分别提高约38.7%和46.1%,拉伸模量分别提高约35.4%和14.5%。而且MHA/PLLA复合膜具有更高的断裂伸长率,填料含量为1%、5%和10%时断裂伸长率分别较HA/PLLA复合膜提高约91.3%、79.7%和96.1%。FESEM结果显示:尤其当填料含量较高时,MHA/PLLA多孔支架复合材料或复合膜中填料粒子分布较HA/PLLA中均匀。结果表明:与HA/PLLA复合材料相比,随着MHA含量增加,MHA/PLLA复合材料具有更好的力学性能,MHA在PLLA基体中分布相对更均匀。  相似文献   

5.
The purpose of this study was to describe the influence of metal particles on the fracture toughness of ceramic matrix composites. Here, alumina matrix composites with molybdenum particles have been investigated. The results presented show that the change of fracture toughness of a ceramic–metal composite can be controlled by the volume fraction of metallic phase and size of metal particles.

The model proposed in this paper describes the change of crack length and as a consequence, the change of KIC value. The results of modelling calculations have been compared with experimentally measured KIC values. This model is useful for simulation of crack length changes in the composites and to design a material with an optimum fracture toughness.  相似文献   


6.
Delamination failure criterion is an important tool for characterizing the fracture behavior of laminated composites under mixed loading. In this paper, a fracture envelope was built based on the energy release rate as a fracture criterion of graphite/PEEK laminates. Unidirectional cracked lap shear (CLS) specimens were employed to calculate mode I and mode II energy release rates (GI, GII. Static fracture tests were conducted using the specimens with two different lap to strap thickness ratios in order to obtain a wide range of GI/GII values. The GI/GII values for each thickness ratio were calculated numerically using finite element analysis. The results showed that as a delamination length changes, the GI/GII varies from 0.13 to 0.48 depending on the lap to strap thickness ratio. It was also found that a linear fracture envelope may be appropriate for a CLS composite specimen.  相似文献   

7.
Calcium phosphate ceramics such as synthetic hydroxyapatite and tricalcium phosphate are widely used in the clinic, but they stimulate less bone regeneration. In this paper, nano-hydroxyapatite/poly(l-lactic acid) (nano-HA/PLLA) spindle composites with good mechanical performance were fabricated by a modified in situ precipitation method. The HA part of composite, distributing homogenously in PLLA matrix, is spindle shape with size of 10–30 nm in diameter and 60–100 nm in length. The molar ratio of Ca/P in the synthesized nano-HA spindles was deduced as 1.52 from the EDS spectra, which is close to the stoichiometric composition of HA (Ca/P & 1.67). The compress strength is up to 150 MPa when the HA content increase to 20 %. The in vitro tests indicate that HA/PLLA bio-composites have good biodegradability and bioactivity when immersed in simulated body fluid solutions. All the results suggested that HA/PLLA nano-biocomposites are appropriate to be applied as bone substitute in bone tissue engineering.  相似文献   

8.
采用原位合成与溶液共混相结合的方法,制备了短切碳纤维(Cf) 增强纳米羟基磷灰石(HA)-聚甲基丙烯酸甲酯(PMMA)生物复合材料。重点研究了短切碳纤维和纳米HA粒子表面改性前后对Cf/HA-PMMA复合材料微观结构和力学性能的影响。采用XRD、FTIR、XPS和SEM等对纳米HA粒子、碳纤维和复合材料的组成结构及断面的微观形貌等进行测试和表征,使用万能材料试验机测试其弯曲、压缩性能。结果表明:经表面氧化的碳纤维和用卵磷脂改性后的纳米HA与PMMA基体的界面结合性明显得到改善;采用卵磷脂表面改性后的纳米HA及表面预氧化后的碳纤维制备的Cf/HA-PMMA复合材料的弯曲性能得到显著提高,与采用未表面改性纳米HA和未表面氧化碳纤维所制备的Cf/HA-PMMA复合材料相比,弯曲、压缩强度和弹性模量分别提高1.6倍、2倍和4.3倍。  相似文献   

9.
OTS-modified HA and its toughening effect on PLLA/HA porous composite   总被引:1,自引:0,他引:1  
In this paper, hydroxyapatite (HA) particles was modified with long-chain organic silane-Octadecyltrichlorosilane (OTS), and the modified particles were further used for preparing Poly(l-lactic acid) PLLA/HA porous composite. The modified particles were characterized by means of XRD, FTIR, and XPS techniques. Both XPS and FTIR results showed that OTS had been combined with HA, and the formation of P–O–Si bond, a covalent bond, on the HA particle surface was confirmed by XPS. OTS-modified HA particles were used to prepare porous composites by thermally induced phase separation method. The results showed that the composite had an interconnected pore structure with 100–300 μm macropores. With OTS dosage increasing during modification, the mechanical properties of PLLA/OTS-modified HA porous composites increased obviously. These results showed that OTS modification can effectively improve the interface compatibility between HA surface and PLLA.  相似文献   

10.
The interlaminar fracture behaviour of AS4/PES (poly(ether sulphone)) composite has been investigated in Mode I, Mode II and for fixed Mode I to Mode II ratios of 0·84, 1·33 and 2·13. The data obtained from these tests have been analysed using several different analytical approaches. The results obtained show that in Mode I the interlaminar crack growth in double cantilever beam (DCB) specimens is accompanied by fibre bridging behind the crack tip and by splitting at the crack tip, and in Mode II by the formation of a damage zone at the crack tip. These failure mechanisms are shown to increase the value of the interlaminar fracture energy considerably as the crack propagates through the composite, i.e. a rising ‘R-curve’ is measured. It is shown also that the value of the interlaminar fracture energy at crack initiation in Mode I, GCI (init), increases as the length of the initial precrack is increased. The lowest GIC (init) value obtained for the poly(ether sulphone) (PES) composite in this study is 0·8 kJm−2, and this value was ascertained from a specimen with the precrack being grown by about 2 mm ahead of the initial crack (a0 = 23 mm, ap = 25 mm). The typical Mode II steady-state propagation energy, GIIC (s/s-prop), value obtained for the specimens was about 2·0 kJm−2. The length of the initial precrack had no significant effect on the GIIC (init) and GI/IIC (init) values. The Mode II tests gave values of GIIC (init) = 1·25 kJm−2 and of GIIC (s/s-prop) = 1·85 kJm−2. Finally, the failure loci for the PES composite have been constructed and theoretical expressions to describe these data considered.  相似文献   

11.
An experimental study was undertaken to investigate the facesheet/core interfacial fracture toughness of E-Glass/Vinylester facesheet, closed-cell polyvinyl chloride (PVC) core, sandwich composites. To determine the effects of a marine environment (temperature and sea-water) on conditioned specimens with a crack present, an interfacial crack was induced prior, as well as subsequent to, 5000 h of elevated temperature (80 °C), elevated temperature and moisture (80 °C, 90%+ relative humidity), and sea-water (submersed) conditioning. The interfacial fracture toughness from room temperature double cantilever beam tests for each environmental condition was then compared using the critical strain energy release rate, GC. The GC was reduced considerably (greater than 50%) in specimens submerged in sea-water, and significantly (approximately 90%) due to 5000 h of the ‘hot/wet’ and hot/dry exposure. Results showed that elevated temperature exposure contributes greatest to the PVC core degradation, whereas sea-water exposure mostly degrades the facesheet/core interface. Exposure to elevated temperatures, along with inducing cracks between the facesheet and a PVC core degraded by elevated temperature exposure, appear to be the most detrimental to interfacial fracture toughness.  相似文献   

12.
A. B. de Morais   《Composites Part A》2003,34(12):1135-1142
Several difficulties in the double cantilever beam (DCB) tests of multidirectional laminates often prevent valid measurements of the mode I critical strain energy release rate GIc. In this paper, several DCB specimens were analysed with 3D finite element models. The results showed that the undesired effects of residual stresses and of mode-mixity can be minimised. An interlaminar stress based fracture criterion predicts that the GIc of multidirectional specimens is typically 10–40% higher than the GIc of unidirectional [0°]n laminates. This agrees with the few valid experimental data available.  相似文献   

13.
The influence of in-plane fibre orientation on the mode I interlaminar fracture toughness, GIc of unstitched and stitched glass/polyester composites is investigated in this paper. The GIc of planar specimens depends on the fibre orientation, θ in the layers adjacent to the fracture plane, in addition to the property of matrix material. The mode I fracture toughness and fracture behavior of unstitched and stitched 0/0, 30/−30, 45/−45, 60/−60, 90/90 and 0/90 interfaces of unidirectional fibre mats (UD) and 30/−30, 45/−45 and 90/90 interfaces of woven roving mats (WRM) are studied. WRM layer orientation is represented by the direction of warp fibres. Stitching is done by untwisted Kevlar fibre roving of Tex 175 g/km at the stitch densities (number of stitches per unit area) of 10.24 and 20.48 stitches/inch2. The specimens having same stitch density, but different stitch distributions are prepared, and the influence of stitch distribution on GIc is studied. Double cantilever beam (DCB) tests are carried out and the GIc is determined using modified beam theory. The GIc of both unstitched and stitched specimens increases with increase in orientation angle, θ upto 45° above which it decreases. The GIc values of unstitched 45/−45 delamination interface is around 2.4 times that of the unstitched 0/0 interfaces. The influence of fibre orientation on GIc is clearly observed in unstitched specimens, whereas in the stitched specimens, stitching plays an important role in improving the GIc and suppresses the influence of fibre orientation; degree of suppression increases with increasing stitch density. When the value of θ is above 45°, transverse cracks are observed in the delamination interface surrounded by UD layers; while in the delamination interface surrounded by WRM layers, transverse cracks are not initiated irrespective of the fibre orientation angle.  相似文献   

14.
This research attempts to utilize polymer degradability in modifying electrical properties of poly(l-lactide) (PLLA)/poly(methyl methacrylate) (PMMA)/carbon fillers composites. Three kinds of carbon particles, i.e. carbon black, vapor-grown carbon fiber, and carbon nanotube, were compounded with PLLA/PMMA blend, followed by hydrolytic degradation of the composites, resulted in degradation of PLLA molecular chain from the surface of samples, with PMMA and carbon particles remained undegraded. By controlling degradation rate, it was possible to prepare samples with low surface resistivity, yet at the same time exhibited high value of volume resistivity. It was also found that final electrical properties of degraded composites depend on the size and the shape of the fillers.  相似文献   

15.
Evaluation of Mode I interlaminar fracture toughness for unidirectional hybrid composites fabricated with a bead filled epoxies was carried out. The two important fracture toughness parameters, GIC and KIC values of hybrid composites, were reviewed in accordance with the orthotropic fracture model. The deviation of measured GIC and KIC values from predicted values were explained based on the critical review of the basic assumption of orthotropic fracture model and characteristic material properties of hybrid composites. It can be said that, basically, the orthotropic fracture model can be used for evaluation of hybrid composite materials. However, careful analysis for GIC and KIC values which were derived from different source and some correction factor for KIC values are necessary.  相似文献   

16.
Effects of LTI addition on the mode I fracture energy of HA/PLLA/PCL were examined and the micro-structural modification due to LTI addition was investigated. Both the mode I energy release rate, G in, and averaged fracture energy, E f, are improved dramatically due to LTI addition. The reason is considered to be the improvements of the interfacial structure connecting HA particles with PLLA/PCL matrix and the miscibility between PLLA and PCL. These changes of blend morphology and interfacial structure reduce the stress concentration and lead to the ductile deformation and resulted in the increase of those fracture properties.  相似文献   

17.
With a comprehensive finite-element model the interface failure process of the single-fibre pull-out test, for the measurement of fibre/matrix adhesion, is investigated on the basis of a fracture-mechanics debonding criterion. Special emphasis is placed on the interface local mixed-mode load, which is shown to have an important influence on the debonding process and is taken into account by a fracture ellipsoid criterion. Additional features investigated are residual thermal stresses, specimen geometrical details (wetting meniscus, drop shape) and a simplistic model of fibre/matrix interfacial friction. For medium debonding lengths the energy release rate runs through a plateau range that can be approximated by a simple analytical approach and can be observed experimentally with a very stiff loading configuration. The mixed-mode state in the plateau range is uniform and dominated by mode 2, but its actual value is quite uncertain. From experimental experience the actual adhesion failure is closely connected with the interface local normal load, while local shear load induces submicroscopic friction and matrix inelasticity which strongly reduce the interface sensitivity, resulting in G1c<G2c. G1c seems to be more significant for adhesion. The interpretation of the plateau range may provide the total critical energy release rate, Gc, for the debonding process, but from a region where mode II prevails. Gc will therefore be far from G1c, reducing the significance of the tests results for characterization of adhesion.  相似文献   

18.
Carbon fibers in unidirectional fabric form are increasingly being used as a means of strengthening deteriorating and understrength concrete components and systems through application as externally bonded reinforcement. The use of wet layup process under ambient conditions makes these composites susceptible to moisture and environment-related deterioration. In addition since the composite is formed in the field, often in overhead or vertical configurations, by sequential placement of fabric layers, it is critical, for the assessment of materials integrity, to characterize damage mechanisms and durability of interlaminar and intralaminar performance characteristics. It is shown that aqueous exposure, as well as freeze–thaw, results in significant fiber–matrix debonding, and this causes deterioration in short-beam-shear and in-plane shear characteristics. Changes in interlaminar properties are seen to be correlated with moisture uptake. It is also seen that fracture toughness, in the short-term, is enhanced by some of these exposures due to plasticization and flexibilizing of the matrix, which assists in the blunting of crack front progression. However, when accompanied by chemical degradation, such as with immersion in alkali solution, and embrittlement caused by low temperature exposure, GIC values are seen to deteriorate as well. The data provides a crucial set of material characteristics for consideration side-by-side with fiber dominated characteristics (such as tensile strength and modulus, which are the only ones considered conventionally in rehabilitation design), since the matrix dominated properties will often be the critical links in determining service life.  相似文献   

19.
In order to clarify strain rate dependency of mechanical properties of β-tricalcium phosphate (TCP)/poly(l-lactic acid) (PLLA) composites after immersion in simulated body environment, tensile tests at various loading rate were conducted on the TCP/PLLA specimens with and without immersion. TCP contents in the composite were 5, 10 and 15 wt%. Phosphate buffered solution was selected as simulated body environment and immersion periods were 8, 16 and 24 weeks. Young’s modulus and tensile strength increased with increasing strain rates. However, the strain rate dependencies decreased with immersion. Swelling and cracks around TCP agglomerations were observed in the cross-section of 15 wt% specimen after 24 weeks immersion. From the fracture surface observation, voids existed only in the ductile fracture surface of the specimen without immersion, whereas they existed in both ductile and brittle surface of the specimen with immersion. These results indicated that diffused water through the interfaces between TCP and PLLA hydrolyzed and weakened the interfaces and/or matrix near the interfaces.  相似文献   

20.
Poly(l-lactide)/hydroxyapatite, PLLA/HA, composite membranes for bone regeneration with different concentrations of nanoparticles have been prepared and their physicochemical properties and bioactivity have been determined. Hydroxyapatite nanoparticles act as nucleating agent of the poly(l-lactide) crystals, as detected by DSC, and as reinforcing filler, as proven by the monotonous increase of the elastic modulus of the microporous membranes with increasing nano-filler content. The bioactivity, which regards to the use of these materials in bone regeneration, was tested by immersing the samples in a simulated body fluid, SBF. A faster deposition of a biomimetic apatite layer was observed as increases the content of hydroxyapatite nanoparticles, thus membranes with a 15% (w/w) of hydroxyapatite particles (relative to PLLA weight) present a homogeneous layer of hydroxyapatite on the surface of their pores after 7 days of immersion in SBF. An especial emphasis has been made on the influence of a plasma treatment on the bioactivity of the membranes. With this aim, the membranes were submitted to a plasma treatment previously to their immersion in a simulated body fluid. It has been observed that the surface of a PLLA membrane after 21 days of immersion in SBF is still not completely covered by hydroxyapatite whereas the same sample treated with plasma show a smooth layer of biomimetic hydroxyapatite. The increase of bioactivity achieved with this treatment was less important in high hydroxyapatite content composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号