首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVES: To investigate the influence of progesterone on proliferation and differentiation of osteoblast at the levels of gene expression and cell functions. METHODS: Fetal rat calvarial osteoblasts were cultured in vitro in the presence of (10(-9) mol/L-10(-6) mol/L) progesterone. Cell proliferation, alkaline phosphalase (ALP) activity, osteocalcin mRNA expression and osteocalcin secretion in the medium and bone nodule formation were analyzed. RESULTS: Progesterone did not influence cell proliferation; Progesterone enhanced the ALP activity in rat osteoblasts; Progesterone stimulated osteocalcin mRNA expression in a dose-dependent manner and increased the amount of osteocalcin in the culture medium; Progesterone increased both number and area of bone nodule formation. CONCLUSION: Progesterone has a multi-stimulating effect on the differentiation of fetal rat calvarial osteoblast, hut no effect on cell proliferation.  相似文献   

2.
Studies about bone formation and regulation are complex due to a close relationship between bone cells. Primary cell cultures allow to understand osteoblastic function. We isolated cells from the cortical metacarpal bone of 85 or 120 day-old ovine fetuses by an enzymatic method. After first passage and cell amplification, the growth medium (DMEM, ascorbic acid and fetal calf serum 10%) was replaced at confluence by a mineralization medium (MM: DMEM, ascorbic acid, beta-glycerophosphate, insulin). Alkaline phosphatase (ALP) activity in cell-matrix layer increased after 4 days of cultures in MM and maximized at day 6. We also measured osteocalcin, ALP and IGF-I secretion simultaneously during mineralization. PTH, PTHrP and 1.25(OH)2D3 decreased ALP activity in cell-matrix layer after 4 days of treatment in MM without fetal calf serum (FCS). Cells from 120 day-old fetuses were cultivated in MM with 10% FCS during 32 days to induce mineralization. Inorganic phosphorus concentration increased in medium between days 5 and 12, Ca concentration decreased in medium after 12 days of culture. Mineralization started at day 12, in the same time ALP activity appeared in medium. Osteocalcin secretion increased between days 6 and 12, decreased at day 14 and increased from day 16 until day 32. Ovine fetal bone cells produced IGF-I until first days of culture in MM. Such ovine osteoblast phenotype cells having the capacity to differentiate and mineralize in vitro would be a model to study the endocrine regulation of osteoblastic function in large mammals.  相似文献   

3.
4.
We have previously shown that osteoblasts derived from trabecular bone explants and cultured long term in 10 nM dexamethasone ((HOB + DEX) cells) exhibited properties consistent with a more differentiated phenotype compared with those grown in the absence of dexamethasone ((HOB-DEX) cells). To characterize these two cell models further, we measured the steady-state mRNA levels of the phenotypic markers alkaline phosphatase (ALP), collagen type I (COLL) and osteocalcin (OC), OC production, and the activities of ALP and parathyroid hormone (PTH)-stimulated adenylate cyclase. These findings were then correlated with the age and sex of the bone donors. Long-term culture in dexamethasone significantly increased ALP and OC mRNA levels and the activities of ALP and PTH-stimulated adenylate cyclase but not OC production, in (HOB + DEX) compared with (HOB-DEX) cells (p < 0.05). When the data were examined with respect to the age of the bone donor, age-dependent differences in the expression and responses to dexamethasone were apparent. ALP and PTH-stimulated adenylate cyclase activities decreased with increasing age of the bone donor in (HOB-DEX) and (HOB + DEX) cells (p < 0.05). There were no significant correlations between phenotypic marker mRNA levels and bone donor age in (HOB-DEX) and ((HOB + DEX) cells. All age-dependent decreases in ALP and PTH-stimulated cyclase activities were enhanced in the (HOB + DEX) cells. However, when the data were examined according to the sex of the bone donor, there were no differences in mRNA levels, OC production, or ALP and cyclase activities between cells from male and female donors. These results indicate an age dependence in the expression of osteoblastic markers in human bone cells at different stages of differentiation: thus osteoblastic cultures derived from older donors are likely to contain fewer osteoprogenitor cells, lower levels of glucocorticoid receptors or represent more differentiated osteoblasts compared with those derived from younger donors.  相似文献   

5.
6.
Evidence exists to suggest that androgens stimulate bone formation in the estrogen-deficient state, however the mechanism of action is unclear. The following study investigates the effect of dihydrotestosterone (DHT) on biochemical markers of bone turnover and calcium homeostasis in sham and oophorectomized (oophx) rats when either vehicle, 40, 80, or 160 mg/kg body weight (bw) DHT were administered at the time of operation or at 15 weeks postoperation. Serum alkaline phosphatase (ALP) increased following DHT administration in sham and oophx rats in all groups (mean ALP +/- SEM [U/l] week 8; sham vehicle, 40 +/- 7; sham 160 mg DHT/kg bw, 72 +/- 5; oophx vehicle, 60 +/- 6; oophx 160 mg DHT/kg bw, 88 +/- 11) (p < 0.001). In contrast, serum osteocalcin was significantly suppressed in oophx rats administered DHT 15 weeks following operation (mean osteocalcin +/- SEM [micrograms/l] week 8; oophx vehicle, 17.6 +/- 3.5; oophx 160 mg DHT/kg bw, 10.5 +/- 1) (p < 0.01). Urine deoxypyridinoline was significantly decreased when DHT was administered 15 weeks postoophorectomy (p < 0.001); however, urine hydroxyproline was not affected by DHT treatment in any group. Urine calcium was decreased by DHT treatment (mean Ca/Cr +/- SEM week 8; sham vehicle, 0.87 +/- 0.13; sham 160 mg DHT/kg bw, 0.24 +/- 0.08; oophx vehicle, 0.68 +/- 0.16; oophx 160 mg DHT/kg bw; 0.45 +/- 0.1) (p < 0.005) which was associated with an increase in the renal tubular reabsorption of calcium (p < 0.05). This study demonstrates the direct effects of DHT on both bone cell activities and the renal handling of calcium.  相似文献   

7.
Bone marrow cells obtained from rat femora were subjected to primary culture with 15% fetal bovine serum in the presence of 10(-8) M dexamethasone, and following trypsin treatment 5 days later were seeded on Petriperm dishes which have a flexible bottom. After a 2-day subculture, a cyclic stress consisting of a 1 s stretch (0.3% strain. 0.5 Hz) and a 1 s relaxation for 30 min every day was started. Culture tissue was removed on day 2 of the subculture (immediately prior to start of stimulation), and then on days 5 and 8 (3 and 6 days after the start of stimulation, respectively), at which times dry weight, DNA, alkaline phosphatase (ALP) activity, and bone Gla protein (BGP, osteocalcin) were measured. Both the dry weight and DNA showed a significant increase in the stimulated group by day 8, while the ALP activity showed a significant increase by day 5. The BGP began to increase in the stimulated group on day 5 in contrast to the control group in which it only increased on day 8. These results support the contention that mechanical stimulation promotes the differentiation of osteogenic cells and enhances bone formation. Since in this experimental model the acceleration of bone formation by mechanical stimulation can be reproduced in vitro, it is extremely useful for investigating the mechanisms underlying mechanical stimulation.  相似文献   

8.
In order to elucidate the action of La3+ on bone metabolism,effects of La3+ on the osteogenic and adipogenic differentiation of pri-mary mouse bone marrow stromal cells(BMSCs) were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) test,alkaline phosphatase(ALP) activity measurement,mineralized function,oil red O stain and measurement.The results showed that La3+ pro-moted the proliferation of BMSCs except at 1×10-10 and 1×10-6 mol/L.The effect of La3+ on the osteogenic differentiation depended on con-centrations at the 7th day,but the osteogenic differentiation was inhibited at any concentration at the 14th day.La3+ promoted the formation of mineralized matrix nodules except at 1×10-8 and 1×10-5 mol/L.La3+ inhibited adipogenic differentiation except at 1×10-10 and 1×10-7 mol/L at the 10th day,and inhibited adipogenic differentiation except at 1×10-9 mol/L at the 16th day.These findings suggested that La3+ might have protective effect on bone at appropriate dose and time.This would be valuable for better understanding the mechanism of the effect of La3+ on bone metabolism.  相似文献   

9.
Osteogenic protein-1 (OP-1), a member of the TGF-beta family of proteins, induces endochondral bone formation. Here we studied the effect of OP-1 on the development of primary cultures of avian growth plate (GP) chondrocytes in either serum-free or serum-containing medium, in the absence or presence of retinoic acid (RA). OP-1 was added on day 7 of culture and continued for 7 days, or until the cultures were harvested, typically on day 21. Alone, OP-1 caused approximately 2-fold increase in proteoglycan synthesis into both the medium and the cell:matrix layer. Additionally, OP-1 caused a dosage-dependent increase in alkaline phosphatase (ALP) activity, and an increase in protein, when given from days 7-14 and examined on day 14. This stimulation was greater in cells grown in serum-free than in serum-containing media (3-5-fold vs. 2-3-fold increase in ALP; approximately 40% vs. approximately 20% increase in protein). Such stimulation of ALP activity and proteoglycan (PG) synthesis in cultured GP cells indicates that OP-1 elicits differentiation of chondrocytes. OP-1 minimally affected cell division (DNA content); however, a slight increase was seen when examined early in the culture. Alone, OP-1 increased mineral (Ca and Pi) content of the cultures by approximately 2-fold in both types of media. As early as day 14, clusters of mineral encircled many of the OP-1 treated cells. Thus, as in vivo, OP-1 strongly promoted mineral formation by the cultured GP chondrocytes. When present together, OP-1 and RA generally blocked the action of the other. Separately OP-1 and RA each stimulated protein synthesis, ALP activity, and Ca2+ deposition; together they were inhibitory to each. Also, RA blocked the stimulation of PG synthesis induced by OP-1; whereas OP-1 decreased cell division engendered by RA. Thus, this GP chondrocyte culture system is a good model for studying factors that influence differentiation and mineral deposition during bone growth in vivo.  相似文献   

10.
11.
The response of osteocalcin and other biochemical markers of vitamin K status to diets formulated to contain different amounts of phylloquinone was assessed in nine healthy subjects aged 20-33 y. Subjects resided in a metabolic ward for two 15-d cycles with a minimum of 6 wk between cycles. A mixed diet containing 100 micrograms phylloquinone/d was fed throughout both cycles; however, the phylloquinone content of one of the cycles was increased to a total of 420 micrograms/d on days 6 through 10 by fortifying corn oil in the diet with phylloquinone (supplemented diet). Total serum osteocalcin concentrations were not affected by either of the dietary treatments. The percentage of undercarboxylated osteocalcin increased an average of 28% over the 15-d cycle with the mixed diet (P < 0.05) and declined significantly an average of 41% with 5 d of the supplemented diet (day 6: 21.9 +/- 1.3%, day 11: 12.8 +/- 1.1%; P = 0.0001) with a rise after the return to the mixed diet (16.7 +/- 1.3%, P < 0.001). Plasma phylloquinone concentrations increased significantly with supplementation (day 6: 0.95 +/- 0.16 nmol/L, day 11: 1.40 +/- 0.29 nmol/L; P < 0.001) and then rapidly returned to presupplementation concentrations on returning to the mixed diet. Twenty-four-hour ratios of urinary gamma-carboxyglutamic acid to creatinine were unchanged with the supplemented diet; however, excretion declined to 91 +/- 2% of baseline after 10 d on the mixed diet (P = 0.01). These results show that undercarboxylated osteocalcin, plasma phylloquinone, and urinary gamma-carboxyglutamic acid excretion appear to be sensitive measures of vitamin K nutritional status because all of these variables were responsive to changes in dietary intake.  相似文献   

12.
While androgens have important skeletal effects, the mechanism(s) of androgen action on bone remain unclear. Current osteoblast models to study androgen effects have several limitations, including the presence of heterogeneous cell populations. In this study, we examined the effects of androgens on the proliferation and differentiation of a novel human fetal osteoblastic cell line (hFOB/AR-6) that expresses a mature osteoblast phenotype and a physiological number (approximately 4,000/nucleus) of androgen receptors (AR). Treatment with 5alpha-dihydrotestosterone (5alpha-DHT) inhibited the proliferation of hFOB/AR-6 cells in a dose-dependent fashion, while it had no effect on the proliferation of hFOB cells, which express low levels of AR (<200/nucleus). In hFOB/AR-6 cells, co-treatment with the specific AR antagonist, hydroxyflutamide abolished 5alpha-DHT-induced growth inhibition. Steady-state levels of transforming growth factor-beta1 (TGF-beta1) and TGF-beta-induced early gene (TIEG) mRNA decreased after treatment of hFOB/AR-6 cells with 5alpha-DHT, suggesting a role for the TGF-beta1-TIEG pathway in mediating 5alpha-DHT-induced growth inhibition of hFOB/AR-6 cells. In support of this, co-treatment of hFOB/AR-6 cells with TGF-beta1 (40 pg/ml) reversed the 5alpha-DHT-induced growth inhibition, whereas TGF-beta1 alone at this dose had no effect on hFOB/AR-6 cell proliferation. Furthermore, treatment of hFOB/AR-6 cells with 5alpha-DHT and testosterone (10(-8) M) inhibited basal and 1,25-(OH)2D3-induced alkaline phosphatase (ALP) activity and type I collagen synthesis without affecting osteocalcin production. Thus, in this fetal osteoblast cell line expressing a physiological number of AR, androgens decrease proliferation and the expression of markers associated with osteoblast differentiation. These studies suggest that the potential anabolic effect of androgens on bone may not be mediated at the level of the mature osteoblast.  相似文献   

13.
Three groups (n = 15/group) of 6-, 12- and 30-month-old (mature, old and senescent animals, respectively) female Wistar rats on a diet (6 g/100 g BW/ day) containing 0.8% calcium and 0.8% inorganic phosphorus were studied. Within each group, 10 rats were ovariectomized surgically and 5 injected s.c. with 17 beta-estradiol (E rats, 10 micrograms/kg BW/48 h) and 5 with solvent alone (OVX rats) from day 2 until day 60 after ovariectomy. Five other rats were sham-operated (SH rats) and received solvent only. All rats were killed by exsanguination 60 days after ovariectomy. Neither ovariectomy nor estradiol treatment had a significant effect upon tibial mechanical properties in 6-, 12- and 30-month-old animals. Bone mineral density (BMD) and bone mineral content (BMC) of the distal femur and BMC of the whole femur were decreased by ovariectomy in 6- and 12-month-old rats, but were not different in the SH and E groups. In senescent animals, in which the lowest BMD and BMC were measured, estradiol treatment was more effective in increasing these parameters than in adult and old rats. Image analysis of the distal femoral diaphysis showed that estradiol treatment prevented trabecular bone loss induced by senescence and/or ovariectomy. In each group, urinary deoxypyridinoline excretion and plasma osteocalcin concentration were higher in the OVX animals than in the controls, consistent with increased bone turnover in the estrogen-deficient state. Both biochemical turnover markers were reduced in the estrogen-treated groups. These results indicate that 17 beta-estradiol is particularly effective at preventing high-turnover-induced osteopenia in 30-month-old animals.  相似文献   

14.
15.
Endosteal bone surface cells were previously shown to be involved in the regulation of bone formation in humans. In this study, we have characterized the cells isolated from the endosteal bone surface in adult rats. Fragments of periosteum-free tibia were obtained from 4-, 6- and 9-month-old rats by collagenase digestion, and the phenotypic characteristics of the osteoblastic cells migrating from the endosteal bone surface were evaluated in culture. Endosteal bone surface cells present a strong alkaline phosphatase (ALP) activity as shown by cytochemistry and measured biochemically. The cells synthesize high levels of osteocalcin as measured by radioimmunoassay. Osteocalcin production was increased after stimulation with 10 nM 1,25 dihydroxyvitamin D (1,25(OH)2 D) and the response to 1,25(OH)2 D was similar at all ages. Endosteal cells from young adult rats (4 months old) but not from older rats (6 and 9 months old) showed increased cAMP production in response to 10 nM parathyroid hormone (PTH), suggesting an age-related decrease in the PTH-responsiveness of the bone surface cells. Immunocytochemistry using specific antibodies showed that preconfluent endosteal bone cells from adult rats expressed collagen and noncollagenous bone proteins in culture in the absence of inducers. The cells synthesized mostly type-I collagen which remained localized intracellularly. Type-III collagen was only expressed at low levels. The bone surface cells also expressed osteocalcin and bone sialoprotein, two markers of differentiated osteoblasts, as well as osteonectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We examined sequential changes of bone-resorbing cytokines and bone metabolic markers and the effect of ovarian hormones on bone metabolism during the menstrual cycle in 10 healthy Japanese women, aged 22-43 yr, with normal ovarian function. Serum soluble interleukin-6 receptor (sIL-6R) showed a significant variation; a rise during the early and late follicular periods followed by a fall during the early luteal period (P = 0.0423, P = 0.0334) and an increase during the mid and late luteal periods. There were significant changes in the levels of markers of bone formation: a rise in serum bone-specific alkaline phosphatase (ALP) during the mid and late follicular (P = 0.0265) periods and a fall in serum carboxyl-terminal propeptide of type I procollagen (PICP) during the midluteal period (P = 0.0161). As for the levels of bone resorption markers, urinary type I collagen C-telopeptide breakdown products (CTx) and free deoxypyridinoline (D-Pyr) decreased significantly during the early and midfollicular periods, urinary free D-Pyr and serum pyridinoline cross-linked carboxyl-terminal telopeptide of type I collagen (ICTP) (P = 0.0440) increased significantly during the early luteal period, and urinary CTx, free D-Pyr, and serum ICTP decreased significantly during the late luteal period (P = 0.0170-0.0008). The serum PTH level was significantly higher during the follicular than the luteal period (P = 0.0132). Serum sIL-6R significantly correlated with urinary CTx (r = 0.190, P < 0.05) and serum ALP (r = 0.209, P < 0.05) and serum estradiol with intact osteocalcin (r = 0.309, P < 0.0005) and serum ALP (r = 0.181, P < 0.05). These observations strongly suggest that cyclic variations in the levels of bone formation and resorption markers and of a bone-resorbing cytokine may be modulated by cyclic changes in serum steroid hormones during the menstrual period. In addition, the specific days of biochemical events in the menstrual cycle are crucial for evaluating osteoclastic and osteoblastic activities in pre- and perimenopausal women or in women starting GnRH agonist therapy.  相似文献   

17.
Twenty-five 30-month-old Lou rats fed a diet (6 g/100 g BW/day) containing 0.9% Ca and 0.8% Pi were divided into five groups. Four groups were surgically ovariectomized. From day 2 until day 29 after ovariectomy, they were S.C. injected either with 17 beta estradiol (E2; 10 micrograms/kg BW/48 hours) or progesterone (P; 140 micrograms/kg BW/48 hours), or 17 beta estradiol + progesterone (E2P) at the same doses, or solvent alone (OVX). The fifth group was sham operated (SH) and injected with solvent. Urine was collected in metabolic cages from day 24 to 29 after ovx, and urinary pyridinoline (PYD) and deoxypyridinoline (DPD) excretion (markers of bone resorption) was measured by HPLC. All animals were killed 30 days after ovariectomy. Serum was then collected for measurement of osteocalcin (OC), alkaline phosphatase (ALP), parathyroid hormone (PTH), and calcitonin (CT). At necropsy, the success of ovariectomy was checked by marked atrophy of the uterine horns. Left and right femur were harvested for densitometric and mineral analysis, respectively. Ovariectomy had no significant effect upon plasma calcium and PTH concentrations. E2 or E2P treatment significantly increased plasma PTH and calcitonin concentrations. Plasma OC concentrations and ALP were not different in any of the groups. In contrast, urinary excretion of PYD and DPD was higher in OVX than in SH rats. Bone mineral density (BMD) of the distal femur was decreased by OVX, but was not different in the E2P and SH groups. A similar pattern was observed for the mineral or Ca content of whole femur. Thus, OVX decreased BMD and bone mineral content (BMC) in very old female rats. Plasma OC concentration and ALP activity failed to demonstrate any significant effect of OVX, whereas PYD and DPD were elevated. These results suggest that bone resorption is increased in OVX rats, even when supplemented with E2 or P alone. However, no significant difference was observed between SH and OVX rats treated with supplementation of both E2 and P. Thus, in very old rats, a combination of E2 and P is much more effective than E2 or P alone to prevent bone loss following ovariectomy.  相似文献   

18.
PURPOSE: To evaluate the effect of 12(R)hydroxyeicosatetraenoic acid (12(R)HETE) on corneal swelling when directly perfused to human and rabbit corneal endothelium. METHOD: Excised rabbit and human corneas were mounted in the in vitro specular microscope and the endothelium was perfused with 12(R)HETE at 10(-5), 10(-6), and 10(-7) mol/l. Both 12(R)HETE and 12(S)HETE were compared at equal molar (10(-6) mol/l) concentrations. The reversal of 12(R)HETE and ouabain corneal swelling was also compared. Endothelial permeability to carboxyfluorescein was measured after 12(R)HETE perfusion. High-performance liquid chromatographic analysis confirmed that 12(R)HETE remained in the perfusion media. RESULTS: 12(R)HETE caused a dose-dependent corneal swelling of 25 +/- 2, 24 +/- 1, and 14 +/- 0.5 microns/hr at 10(-5), 10(-6), and 10(-7) mol/l, respectively. Equal molar concentrations (10(-6) mol/l) of 12(S)HETE did not cause corneal swelling. Removal of the 12(R)HETE from the perfusion media resulted in reversal of corneal swelling whereas corneal swelling induced by ouabain did not reverse after ouabain removal. 12(R)HETE (10(-6) mol/l) perfused to the human corneal endothelium inhibited temperature reversal corneal thinning when compared to the paired corneal endothelium perfused with BSS Plus (Alcon Laboratories, Inc., Fort Worth, TX). Na/K adenosine triphosphatase activity was inhibited by 10(-6) mol/l ouabain by 35%, 10(-6) mol/l 12(R)HETE by 54%, and 10(-6) mol/l 12(S)HETE by 0.5%. Endothelial permeability to carboxyfluorescein was unaffected by 12(R)HETE. CONCLUSION: 12(R)HETE causes corneal swelling by inhibiting endothelial pump function. This inhibition of transport appears to be at least partly mediated by inhibition of endothelial Na/K adenosine triphosphatase.  相似文献   

19.
Human and murine osteocalcin genes demonstrate similar cell-specific expression patterns despite significant differences in gene locus organization and sequence variations in cis-acting regulatory elements. To investigate whether differences in these regulatory regions result in an altered response to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in vivo, we compared the response of the endogenous mouse osteocalcin gene to a bacterial reporter gene directed by flanking regions of the human osteocalcin gene in transgenic mice. Transgene expression colocalized with endogenous osteocalcin expression in serial sections, being detected in osteoblasts, osteocytes and hypertrophic chondrocytes. In calvarial cell culture lysates from transgenic and nontransgenic mice, the endogenous mouse osteocalcin gene did not respond to 1,25-(OH)2D3 treatment. Despite this, transgene activity was significantly increased in the same cells. Similarly, Northern blots of total cellular RNA and in situ hybridization studies of transgenic animals demonstrated a maximal increase in transgene expression at 6 h after 1,25-(OH)2D3 injection (23.6+/-3.6-fold) with a return to levels equivalent to uninjected animals by 24 h (1.2+/-0.1-fold). This increase in transgene expression was also observed at 6 h after 1,25-(OH)2D3 treatment in animals on a low calcium diet (25.2+/-7.7-fold) as well as in transgenic mice fed a vitamin D-deficient diet containing strontium chloride to block endogenous 1,25-(OH)2D3 production (7.5+/-0.9-fold). In contrast to the increased transgene expression levels, neither endogenous mouse osteocalcin mRNA levels nor serum osteocalcin levels were significantly altered after 1,25-(OH)2D3 injection in transgenic or nontransgenic mice, regardless of dietary manipulations, supporting evidence for different mechanisms regulating the response of human and mouse osteocalcin genes to 1,25-(OH)2D3. Although the cis- and trans-acting mechanisms directing cell-specific gene expression appear to be conserved in the mouse and human osteocalcin genes, responsiveness to 1,25-(OH)2D3 is not. The mouse osteocalcin genes do not respond to 1,25-(OH)2D3 treatment, but the human osteocalcin-directed transgene is markedly upregulated under the same conditions and in the same cells. The divergent responses of these homologous genes to 1,25-(OH)2D3 are therefore likely to be due to differences in mouse and human osteocalcin-regulatory sequences rather than to variation in the complement of trans-acting factors present in mouse osteoblastic cells. Increased understanding of these murine-human differences in osteocalcin regulation may shed light on the function of osteocalcin and its regulation by vitamin D in bone physiology.  相似文献   

20.
The objective was to investigate the effect of growth hormone (GH) administration on circulating levels of free insulin-like growth factors (IGFs) in healthy adults. Eight healthy male subjects were given placebo and two doses of GH (3 and 6 IU/m2 per day) for 14 days in a double-blind crossover study. Fasting blood samples were obtained every second day. Free IGF-I and IGF-II were determined by ultrafiltration of serum. Total IGF-I and IGF-II were measured after acid-ethanol extraction. In addition, GH, insulin, IGF binding protein 1 (IGFBP-1) and IGFBP-3 were measured. Serum-free and total IGF-I increased in a dose-dependent manner during the 14 days of GH administration. After 14 days, serum-free IGF-I values were 610 +/- 100 ng/l (mean +/- SEM) (placebo), 2760 +/- 190 ng/l (3 IU/ m2) and 3720 +/- 240 ng/l (6 IU/m2) (p = 0.0001 for 3 and 6 IU/m2 vs placebo; p = 0.004 for 3 IU/m2 vs 6 IU/m2). Total IGF-I values were 190 +/- 10 micrograms/l (placebo), 525 +/- 10 (3 IU/m2), and 655 +/- 40 micrograms/l (6 IU/m2) (p < 0.0001 for 3 and 6 IU/m2 vs placebo; p = 0.04 for 3 IU/m2). There were no differences in the levels of free or total IGF-II during the three study periods. Insulin-like growth factor binding protein 1 was decreased during GH administration (p = 0.04 for placebo vs 3 IU/m2; p = 0.006 for placebo vs 6 IU/m2). In conclusion, fasting serum free IGF-I increased dose dependently during GH administration and free IGF-I increased relatively more than total IGF-I. This may partly be due to the decrease in IGFBP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号