首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
基于晶体塑性理论,考虑孪生软化效应建立了描述孪晶形核、增殖和长大的位错密度基晶体塑性有限元模型。应用该模型揭示了不同晶体取向Cu单晶拉伸变形过程中位错滑移、孪生激活及其交互作用下的宏观塑性行为演化规律,进一步分析了Cu多晶拉伸变形过程中晶粒间交互作用对孪生软化、应变硬化等宏观塑性行为的影响。结果表明:孪生具有明显的取向效应,在孪生主导塑性条件下,Cu单晶塑性变形过程中孪晶增殖导致应力-应变曲线存在明显的应力突降现象,其塑性变形分为滑移、孪生及位错与孪晶交互作用3个阶段;此外,随着饱和孪晶体积分数增加,Cu单晶塑性变形过程中第3阶段的应变硬化率也随之提升。进一步模拟Cu多晶拉伸变形的塑性行为可知,在晶粒间交互作用下孪晶形核、增殖和长大过程中不会出现应力突降现象,与Cu单晶相比整个塑性变形过程具有更高的应变硬化率;Cu多晶塑性变形过程中位错密度在晶界处出现集中现象,孪晶也容易在晶界处形成。  相似文献   

2.
基于晶体塑性理论,考虑孪生软化效应建立了描述孪晶形核、增殖和长大的位错密度基晶体塑性有限元模型。应用该模型揭示了不同晶体取向Cu单晶拉伸变形过程中位错滑移、孪生激活及其交互作用下的宏观塑性行为演化规律,进一步分析了Cu多晶拉伸变形过程中晶粒间交互作用对孪生软化、应变硬化等宏观塑性行为的影响。结果表明:孪生具有明显的取向效应,在孪生主导塑性条件下,Cu单晶塑性变形过程中孪晶增殖导致应力-应变曲线存在明显的应力突降现象,其塑性变形分为滑移、孪生及位错与孪晶交互作用3个阶段;此外,随着饱和孪晶体积分数增加,Cu单晶塑性变形过程中第3阶段的应变硬化率也随之提升。进一步模拟Cu多晶拉伸变形的塑性行为可知,在晶粒间交互作用下孪晶形核、增殖和长大过程中不会出现应力突降现象,与Cu单晶相比整个塑性变形过程具有更高的应变硬化率;Cu多晶塑性变形过程中位错密度在晶界处出现集中现象,孪晶也容易在晶界处形成。  相似文献   

3.
本文利用喷射沉积技术合成含Ni的Al-Zn-Mg-Cu合金,合金中的Ni元素以亚微米球状Al9Fe0.7Ni1.3化合物的形式存在。利用扫描电镜和电子背散射衍射、透射电镜以及拉伸测试研究了Al9Fe0.7Ni1.3颗粒对合金固溶处理后组织和性能的影响。结果发现:Al9Fe0.7Ni1.3颗粒主要在晶界附近分布,说明该颗粒在固溶过程中具有有力的抑制再结晶作用。固溶处理后,合金的拉伸强度为603 MPa,断裂延伸率为11.79%,主要断裂方式为穿晶延性断裂。实验结果表明亚微米球状Al9Fe0.7Ni1.3化合物对合金性能有重要影响,可以产生细晶强化和Orowan强化,是合金发生穿晶延性断裂的主要原因。  相似文献   

4.
采用等温压缩分析了Fe0.25Cr0.25Ni0.25Mn0.25中熵合金在900~1050 ℃、0.001~1 s-1应变速率范围内的流变行为。结果表明,热变形以动态再结晶为主,与其他低堆垛层错能的合金一样,流变曲线呈单峰形状。建立了本构模型来描述整个变形过程,分析了加工硬化行为和动态软化过程。利用Kocks-Mecking图发现,在加工硬化阶段,合金的硬化速率随应力呈线性降低,因此应力-应变行为可以用传统的位错密度模型来描述。同时,采用经典的JMAK方程描述由动态再结晶引起的软化过程。此外,对本构模型进行了进一步的修改,减少了参数的数量,简化了回归分析。所提出的半物理模型不仅可以准确地预测应变范围外的应力-应变行为,而且可用于其他低层错能合金。  相似文献   

5.
张黎楠  谌祺  柳林 《金属学报》2009,45(4):450-454
Zr55Cu30Al10Ni5块体非晶合金(BMG)在过冷液态区内的单向压缩实验表明: 材料在过冷液态区内的形变行为强烈依赖于温度和变形速率. 随着应变速率的增加, 材料的流变特征由Newtonian流变转变为非Newtonian流变.利用扩展指数本构方程模型建立了非晶合金的流变应力、应变速率和温度的关系.  相似文献   

6.
采用SEM和TEM研究了室温(23℃)和中温(650、750、815℃)下第3代镍基粉末高温合金(FGH98)拉伸变形显微组织、行为和机制。结果表明:含有多模尺寸分布γ′相的合金具有优良的拉伸性能,室温拉伸主要变形机制为位错剪切γ′相形成层错,并在γ′相周围形成位错环,阻碍后续位错运动。中温拉伸变形机制为位错剪切γ′相形成层错和形变孪晶,随着变形温度的升高,形变孪晶增多。给出了a/3112不全位错剪切γ′相形成层错和形变孪晶共存的模型,随着应变量的增加,在连续相邻的{111}滑移面上层错堆积变多,促进连续孪晶的形成,协调了γ和γ′相两相之间的变形,有助于释放两相之间的变形应力和提高合金强韧性。  相似文献   

7.
本文基于分子动力学模拟,通过研究钛单晶纳米柱在拉伸和压缩下的力学响应特征及晶体结构演化行为,揭示其塑性变形机制。结果表明沿[0001]晶向拉伸条件下主要塑性变形机制为伴生的{101 ?2}孪晶和基面层错;而沿[0001]晶向压缩条件下,基面位错作为优先形核的缺陷参与到塑性变形过程,随后锥面位错出现并协调了轴向和横向变形,压缩条件下无孪晶产生。拉伸模拟过程中观察到一种有别于传统孪生的晶体再取向现象,其孪晶与基体间呈现基面/柱面对应关系。  相似文献   

8.
为探究γ/α2相界面对TiAl合金在轰击过程中的变形机制和轰击后力学性能的影响,通过分子动力学来模拟超音速微粒轰击双相TiAl合金的过程。结果表明:γ/α2不同厚度比模型的冲击变形机制不同,变形主要集中在γ相和界面处。随着γ相厚度的减小,与相界面接触的位错首先被界面处的失配位错网络吸收,然后在相界面处成核,最终穿过相界面进入α2相。冲击过程中产生的位错以Shockley位错为主,试样中形成了不完全层错四面体。冲击之后分别使用单轴拉伸模拟和纳米压痕模拟,测定了试样的强度和表面硬度。拉伸过程中相变、孪晶和层错是不同厚度比试样的主要变形机制。与其他试样相比,厚度比为1:3的双相TiAl合金在冲击后具有最高的屈服强度、硬度和弹性模量。  相似文献   

9.
本文在600 ℃、5×10-4 s-1条件下对不同γ′相尺寸的毫米级粗晶新型Ni-Cr-Co基合金进行高温拉伸实验,并结合OM,SEM和TEM研究γ′相尺寸对合金高温变形行为和锯齿流变效应的影响。结果表明,γ′相尺寸对合金力学性能影响显著,随着γ′相尺寸的增加,材料强度呈先提高后降低的趋势,合金的主要变形机制由位错切过γ′相转变为位错绕过γ′相;当γ′相尺寸持续增加时,位错运动受阻难以绕过γ′相,溶质原子钉扎可动位错,当应力增大至一定程度时位错脱钉,反复的钉扎与脱钉即动态应变时效导致合金在变形过程中出现锯齿流变效应。可通过调控γ′相尺寸弱化,当γ′相平均尺寸为57.18 nm时,锯齿流变效应微弱,临界应变最大,力学性能较高,因此γ′相最佳尺寸为57.18 nm。  相似文献   

10.
本文研究了通过机械合金化+热压工艺制备的细晶Cr-NbCr2合金的热稳定性。结果表明:热暴露过程中,Cr基体的颗粒尺寸有一定程度的长大,而Laves相NbCr2颗粒由于其高热稳定性无明显变化。随着热暴露的进行,Cr基体颗粒与Laves相NbCr2颗粒间压应力增加,使得基体和Laves相中分别出现了位错和层错/孪晶结构。所有热暴露条件下的Cr-NbCr2合金的强度均不低于热压态的。在800-1200℃热暴露50h后,Cr-NbCr2合金仍保持了较高的屈服强度和良好的塑性。但随着热暴露时间的继续延长,此时颗粒的长大成为主导因素,使得Cr-NbCr2合金的屈服强度和塑性明显下降。  相似文献   

11.
The results of a complex study of ternary TiNiFe alloys with a low-temperature shape-memory effect subjected to megaplastic deformation by high-pressure torsion (HPT) with subsequent heat treatment are presented. Investigations have been performed using X-ray diffraction, transmission and scanning electron microscopy, and measurements of electrical properties. It has been established that, at moderate degrees of reduction, the plastic deformation in the Ti50Ni49Fe1 alloy induces a B2 ? B19′ thermoelastic martensitic transformation and the formation of a developed banded dislocation and twin structure in the B19′ martensite; in the Ti50Ni47Fe3 alloy, a mainly analogous dislocation substructure is formed, but in the B2 austenite. The megaplastic deformation by HPT at room temperature leads to the amorphization of the Ti50Ni49Fe1 alloy and to the high-angle nanofragmentation of the Ti50Ni47Fe3 alloy. Specific features of the evolution of the structure and martensitic transformations in the TiNiFe ternary alloys after plastic deformation and heat treatment have been established. It has been found that the heat treatment of both alloys after HPT at temperatures of 553–773 K results in the formation of a nanocrystalline or mixed nano-submicro-crystalline structure.  相似文献   

12.
《Acta Materialia》2007,55(14):4845-4852
A first-principles method is employed to investigate the segregation behaviors of hydrogen and boron in Ni-based and Ni3Al-based alloys using two models. Chemical binding energy analysis shows that both boron and hydrogen are able to segregate to the interstices in the Ni phase, Ni3Al phase and Ni/Ni3Al interface. Boron, however, is bound to its neighbor atoms more tightly than hydrogen in both models and its stable state exists over a broader lattice misfit range compared with hydrogen. The bond order analysis we have proposed reveals the origin of the boron-induced ductility and hydrogen-induced embrittlment at the Ni/Ni3Al interface with different lattice misfit. The calculations indicate that hydrogen causes more severe embrittlement at the Ni/Ni3Al interface in Ni3Al-based than in Ni-based alloys. Furthermore, it is found that the boron-induced ductility and hydrogen-induced embrittlement are changed, and thus controllable, by the lattice misfit. Our results provide a quantitative explanation of many experimental phenomena caused by the addition of boron and hydrogen to Ni-based and Ni3Al-based alloys.  相似文献   

13.
Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.  相似文献   

14.
《Intermetallics》2000,8(5-6):619-622
The novel idea for designing quaternary superalloys by two kinds of binary alloys with coherent structure was applied to Ir–Nb–Ni–Al superalloys. Eight alloys were prepared by combining two sorts of binary alloys, Ir–Nb and Ni–Al, in different proportions. The effects of the mole fraction of Ir-based alloy or the L12 alloy on the microstructure and the 0.2% flow stress of quaternary alloys were investigated. Two sorts of coherent structure, fcc/L12–Ir3Nb and fcc/L12–Ni3Al, were observed in the quaternary superalloys. The new developed quaternary Ir-based superalloys are of the advantages of Ir-based alloys and Ni-based superalloys. The 0.2% flow stress of Ir–Nb–Ni–Al at 1200°C could reach up to 350 MPa and the compressive strains were improved greatly compared with Ir-based alloys.  相似文献   

15.
《Intermetallics》2000,8(9-11):1005-1011
The strain-rate dependence of the flow stress has been studied by strain-rate change test in binary, stoichiometric and Ni-rich Ni3Al single crystals at 400 K. In the stoichiometric alloys, the flow stress has been found to be independent of strain rate for all the orientations, though it changes temporarily after the strain-rate change. This stain-rate independence of the flow stress was also confirmed in Ni–24.5 at.% Al and Ni–24 at.% Al. The CRSSs of these Ni-rich alloys were the same as the stoichiometric one. These results indicate that the anti-site defects in the off-stoichiometric alloy have very little effect on the dislocation motion. It is also suggested that the small strain-rate dependence reported in ternary alloys may be due to the ternary elements. In binary Ni3Al without these elements, the flow stress is considered to be controlled by an athermal process such as dislocation multiplication.  相似文献   

16.
The transition in deformation mode from highly localized to non-localized deformation was investigated in Ni60Nb40 glassy film by monitoring the reduction in thickness during film/substrate co-bending. It is revealed that in addition to the film thickness, the mode of plastic deformation depends on the stress state. With the reduction in thickness of thin film, tensile stress can efficiently suppress the change in deformation mode from highly localized to non-localized deformation in comparison with compressive stress. A mechanism for the stress-state-dependent deformation mode change in glassy alloys is discussed on the basis of the pressure/stress effect of plastic deformation and Griffith’s crack-propagation criterion. This study provides distinct evidence of the deformation mode change in metallic glassy film via the variation in stress state, and also sheds light on the deformation mechanism of glassy alloys.  相似文献   

17.
Ni–Mn–Co–Ga alloys with Ni/Mn or Ni and Mn substituted by Co were investigated as candidates for high-temperature shape-memory alloys. Ni56?xCoxMn25Ga19 alloys with x < 8 consist of single phase martensite, whereas Ni56?xCoxMn25Ga19 (x ? 8), Ni56Mn25?yCoyGa19 (y = 4, 8) and Ni56?z/2Mn25?z/2CozGa19 (z = 4, 6) alloys consist of a two-phase mixture of martensite and γ phase. The mechanical and shape-memory properties of Ni56Mn25?yCoyGa19 and Ni56?z/2Mn25?z/2CozGa19 alloys, which were hot-rolled into 0.5 mm thin plates by conventional hot rolling process, were investigated. The ductility and hot-workability of Ni–Mn–Co–Ga alloys were greatly improved by increasing the amount of ductile γ phase. Dynamic tensile tests and scanning electron microscopy observations of fracture surfaces confirm that the existence of γ phase plays a key role in improving the ductility of Ni–Mn–Co–Ga alloys.  相似文献   

18.
The Ni (001) surface, Ni3Nb (001) surface and Ni (001)/Ni3Nb (001) interfaces were studied using the first-principles pseudopotential plane-wave method. The adhesion work, thermal stability and electronic structure of Ni/Ni3Nb (001) interfaces were calculated to expound the influence of atom termination and stacking sequence on the interface strength and stability. Simulated results indicate that Ni and Ni3Nb (001) surface models with more than eight atomic layers exhibit bulk-like interior. The (Ni+Nb)-terminated interface with hollow site stacking has the largest cohesive strength and critical stress for crack propagation and the best thermal stability among the four models. This interfacial Ni and the first nearest neighbor Nb atoms form covalent bonds across the interface region, which are mainly contributed by Nb 4d and Ni 3d valence electrons. By comparison, the thermal stability of Ni/Ni3Nb (001) interfaces is worse than Ni/Ni3Al (001) interface, implying that the former is harder to form. But the Ni/Ni3Nb interface can improve the mechanical properties of Ni-based superalloys.  相似文献   

19.
J. Wang  H. Sehitoglu 《Acta Materialia》2013,61(18):6790-6801
Utilizing first-principles atomistic simulations we present a twin nucleation model based on the Peierls–Nabarro formulation. We investigated twinning in several important shape memory alloys, starting with Ni2FeGa (14M modulated monoclinic and L10 crystals) to illustrate the methodology, and predicted the twin stress in Ni2MnGa, NiTi, Co2NiGa, and Co2NiAl martensites, all of which were in excellent agreement with the experimental results. Minimization of the total energy led to determination of the twinning stress accounting for the twinning energy landscape in the presence of interacting multiple twin dislocations and disregistry profiles at the dislocation core. The validity of the model was confirmed by determining the twinning stress from experiments on Ni2FeGa (14M and L10), NiTi, and Ni2MnGa and utilizing results from the literature for Co2NiGa and Co2NiAl martensites. This paper demonstrates that the predicted twinning stress can vary from 3.5 MPa in 10M Ni2MnGa to 129 MPa for the B19′ NiTi case, consistent with the experimental results.  相似文献   

20.
The deformation mechanisms in a single phase face-entered cubic high-entropy alloy, Al0.1CoCrFeNi, under tensile loading are investigated using classical molecular simulations. Our atomistic model employed for quasi-statically straining the alloy is validated against the predictions of lattice structure, pair-correlations and material density. The Young's modulus determined from the linear stress-strain profile in the elastic regime concurs with previous experimental reports. During plastic deformation, we find that dislocation nucleation and mobility plays a pivotal role in initially triggering twin boundaries followed by the generation of intrinsic and extrinsic stacking faults in the alloy. At room temperature, we find dislocation annihilation contributes to the shear resistance of the alloy effecting a serration laden plastic flow of stress as uniaxial strain is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号