共查询到20条相似文献,搜索用时 0 毫秒
1.
基于生成MRF和局部统计特性的红外弱小目标检测算法 总被引:3,自引:0,他引:3
红外复杂背景中的弱小目标检测问题可看作是马尔可夫随机场理论框架下红外图像中背景与目标的二元分类标记问题.基于马尔可夫随机场后验概率模型, 提出利用先验的目标信杂比信息和图像局部统计特性构建观测图像后验概率模型的方法, 并采用经典ICM (Iterated conditional mode)方法对图像最优标记结果进行估计.仿真试验结果表明, 算法在保证目标标记结果准确率的同时, 有效降低了背景的误标记概率; 且由于采用局部统计特性进行建模, 算法有效降低了模型参数与标记结果间的关联性, 提高了最优标记估计的收敛速度. 相似文献
2.
针对复杂背景下尺寸未知的红外弱小目标检测难题,一种基于聚类思想的红外弱小目标检测方法被提出。首先,利用小目标形态学特征对原始红外图像进行预处理,生成新的密度特征图。其次,使用改进的密度峰聚类算法对潜在候选目标进行粗定位。然后,针对潜在目标的局部候选集,采用加权模糊集聚类算法对局部候选集进行目标与背景区域的精细分割,利用目标与背景之间的差异性在增强目标的同时抑制虚警。最后,对处理后的局部候选集进行自适应阈值提取真实目标。实验结果表明,与7种对比算法相比,该算法对尺寸未知的小目标具有良好的鲁棒性和检测性能。 相似文献
3.
为了提高海上红外弱小目标检测的检测精度和实时性,提出了一种基于加权场景先验的红外弱小目标检测方法.该方法首先利用目标的稀疏特性以及海面场景的非局部自相关特性,将目标和背景的分离问题转化为恢复低秩和稀疏矩阵的鲁棒主成分分析(Robust Principal Component Analysis,RPCA)问题.之后,将海面背景的先验特征信息通过加权核范数的方式加入模型,加快算法中目标和背景图像块矩阵的分解速度.最后,通过引入交替方向乘子法(ADMM)算法进一步加速求解的迭代速度.实验结果表明:该算法能有效地提高目标检测准确率,算法实时性较原算法提高了120%. 相似文献
4.
为有效去除动态背景对弱小目标信号的干扰,提出改进特征空间的红外弱小目标背景建模法来抑制背景。先采用改进的各向异性滤波算法从空域角度进行滤波以约束图像各个组分的差异,紧接着取连续时间域上多帧滤波后的图像组成一个特征矩阵,借助于主成分分析法进行特征分解,最后将输入图像投影到特征空间上进行背景建模,同时为了适应动态变化的背景,在时域上以一定学习率来更新背景模型。实验结果表明,提出的算法比传统的算法取得更好的背景估计效果,结构相似性SSIM、对比度增益I和背景抑制因子BIF分别大于0.97、15.46和5.25。 相似文献
5.
基于显著性与尺度空间的红外弱小目标检测 总被引:1,自引:0,他引:1
针对复杂的天空背景,提出了一种基于显著性与尺度空间的红外弱小目标检测算法.首先通过频域残差法对原始图像进行初步处理,缩小红外弱小目标的待识别目标区域;接着利用DoG算子得到预处理后图像的尺度空间并实行特征点检测,获得最佳尺度图像,再对特征图像进行加权融合;最后通过信息熵分割来实现红外弱小目标的检测.仿真结果表明,本文方法跟文献中所提的优秀算法相比,能有效地检测出红外弱小目标,提升了目标图像的信杂比.同时,能很好地适应不同复杂场景,为红外弱小目标的跟踪应用奠定了基础. 相似文献
6.
为解决复杂背景下红外弱小目标检测精度低的问题,本文提出一种基于视觉对比机制的红外弱小目标检测方法,算法主要模拟了人眼对目标对比度敏感这一机制。首先利用8向梯度方程提取红外图像的梯度显著图并二值化处理;根据小目标的尺寸大小特征对梯度显著图进行优化处理,剔除孤立的噪声点和尺寸较大的背景梯度显著区域;利用视觉对比机制对优化后的显著图进行局部对比度计算,通过阈值处理剔除虚警目标,完成红外弱小目标检测。仿真实验表明,该算法在低信噪比情况下对红外弱小目标的检测率较高,且虚警率低,单帧检测时间较小。 相似文献
7.
低信噪比条件下的红外弱小目标检测问题一直是近些年来国内外学者研究的一个热门课题。针对复杂背景下红外图像弱小目标检测困难、信噪比低的问题,越来越多的新方法不断被提出。更好的实时性,更高的检测概率,更低的虚警率成为了研究者们追求的目标,实时、鲁棒、通用成为了红外弱小目标检测信号处理算法的核心要求。本文梳理了红外弱小目标检测的常用方法以及其技术发展,在介绍一些传统算法发展的基础上,重点介绍了红外弱小目标检测的几类典型算法的原理、发展及其优化算法,为后续红外弱小目标检测的研究提供了便利。 相似文献
8.
针对天空背景下红外弱小目标检测困难的情况,首先通过改进的形态学滤波目标增强方法对图像进行背景抑制与噪声去除,而后采用恒虚警检测方法(CFAR)对滤波后图像进行分割,获得候选点目标,然后采用行程目标标记的方法得到候选目标的位置信息、面积信息等,单帧图像检测之后,复杂的天空背景仍然会存在虚警。为了提高检测概率、降低虚警率,结合目标运动特性(包括运动轨迹、速度、加速度等)、灰度变化、面积变化等帧间相关性采用移动式管道滤波方法对序列图像候选目标做进一步判断。实验结果表明,该方法能有效地从复杂背景中检测出真实目标。 相似文献
9.
针对复杂背景下红外弱小目标信噪比(SNR)低、对 比度小造成的红外目标检测率低和实时性差的问题,提出一种基于多向梯度法的红外弱小目 标快速提取算法。目标提取前, 利用多尺度拉普拉斯-高斯(LoG)算子抑制图像背景,凸显背景边缘轮廓与弱小目标;然后 引 入多向梯度目标搜索算法,选取最佳梯度数,利用最简算法快速搜索目标。实验结果表明, 本文算法处理后的红外图像有较高的SNR与对比度,检测率 为传统红外目标提取算法的1.5倍,充分保证了检测精度,且计算耗 时短,实时性强。 相似文献
10.
基于超完备字典的图像稀疏表示是一种新的图像表示理论,利用超完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示.针对红外小目标检测问题,提出了一种基于图像稀疏表示的检测方法,该方法采用二维高斯模型生成样本图像,继而构造超完备目标字典,然后依次提取测试图像的图像子块并计算其在超完备字典中的表示系数,背... 相似文献
11.
12.
13.
14.
15.
对比红外小目标检测方法和其它目标检测方法,由于低信噪比、低对比度、小尺寸、缺乏目标的形状和纹理信息等多种因素,尤其是在复杂背景条件下,红外小目标的检测会更加的困难.在实践中,一种基于同组过滤器(Peer Group Fileter,PGF),二维经验模式分解(Bidimensional Empirical Mode Decomposition,BEMD)和局部逆熵(Local Inverse Entropy,LIE)的新型红外小目标检测方法被提出来,以解决前面所提到的问题.其中PGF被用来消除噪声和改善初始图像的信噪比;BEMD算法可以有效地估计背景并将背景从原始图像中移除;而LIE的主要作用是分解本征模态函数(Intrinsic Mode Function,IMF).实验结果表明,新的方法可以有效且准确地提取小目标. 相似文献
16.
17.
红外小目标检测一直是红外图像处理的难点之一,由于多种因素的影响,红外小目标容易被覆盖。分析红外图像特征,采用形态学对图像进行背景噪声抑制,在去除大部分噪声的情况下,首先利用灰度信息确定目标点的位置,然后利用区域梯度信息进而确定目标尺寸大小,对仿真图像进行处理并与K均值聚类法和形态学算法进行比较。实验结果表明:在低噪声情况下,三类算法均能有效地进行小目标检测,但在噪声复杂,信噪比较低的情况下,K均值聚类法未能检测出目标,形态学算法产生了多个虚警,而该算法依然能有效检测出小目标。 相似文献
18.
19.
介绍了存在背景干扰和噪声情况下的红外图像中弱小目标的检测问题,提出一种基于Contourlet变换的检测算法。首先对图像进行Contourlet变换,利用Contourlet分解后子图像的特性抑制背景和去噪声,最终实现对目标的检测。通过在含有随机目标的红外序列图像中的实验,并与小波变换进行比较,证明了算法的有效性。 相似文献
20.
双树复小波分析是一种有效的图像处理方法,但是将其直接应用于红外小目标检测时,由于其对图像中的高频信息特别敏感,无法在保留目标的同时有效地滤除噪声。论文充分利用双树复小波方法方向性好的优点,并针对其高频敏感问题,提出了一种基于双树复小波变换与图像熵的红外小目标检测算法,从而能够有效去除图像中的杂波,同时凸显出小目标。该算法首先对原始图像进行双树复小波分解,将其低频子带置零,并利用高频子带进行双树复小波重构;接着,对重构后的图像进行二次双树复小波分解,并采用改进的Top-Hat算子对分解后的低频子带进行滤波,同时保留分解后±15°方向的子带,并通过高通滤波对其进行处理;之后,将滤波后的低频子带图像与原低频子带图像进行差分,得到低频差分图像;最后,利用低频差分图像与滤波后的高频子带图像进行红外图像重构,并通过局部图像熵进行加权,从而提取出红外小目标。实验结果表明,与对比算法相比,本文算法在BSF与SCRG方面表现优越,可以有效抑制背景中的杂波并提高小目标的信杂比。 相似文献