首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sectional void fraction measurement for multiphase flow is usually influenced by flow patterns. Inspired by electrical capacitance tomography (ECT) devices applied to flow imaging (whose measured capacitance data contain both the flow pattern and sectional void fraction information), a capacitive array sensor is developed to realize two functions, flow pattern recognition and void fraction measurement, simultaneously; so that the void fraction measurement can be conducted for a certain flow pattern and the measurement accuracy can be expected to be improved. The main idea of the proposed method can be described as: firstly, the proper feature vectors are extracted from the electrical signal to identify the flow pattern (the BPNN model with GDX learning algorithm is used for flow pattern identification); and then the average of electrical signal is applied to estimates the void fraction by the corresponding calibration curve. An experimental platform of air/water two-phase flow is built (on which 3 flow patterns can be generated stably) to test the performance of the proposed method. The results support the correctness and effectiveness of the proposed method.  相似文献   

2.
Vertical upward gas-liquid slug flows are frequently encountered in chemical processes and petroleum industries. The measurement of the film fluctuations and the aerated characteristics is of great significance for uncovering the mechanism of slug-churn flow pattern transitions. In this study, a conductance wire-mesh sensor (WMS) measurement system is designed based on a Field Programmable Gate Array (FPGA) to visualize the structures of vertical gas-liquid flows. Liquid film flooding is a significant factor prompting the transition from slug to churn flow. Based on the WMS data, the 3D film structures are derived to indicate film instability during the flow pattern transition. Three types of film fluctuations in stable slug flow, unstable slug flow, and churn flow are presented. Liquid slug aeration is another important factor contributing to the slug-churn flow transition. The spatial distribution and the diameters of the gas bubbles in the liquid slug are detected by the WMS. The coalescence behavior of the bubbles is uncovered. Finally, mechanistic models based on the film flooding and slug aeration are constructed to predict the boundary of the flow pattern transition. The performance of the film flooding model and slug aeration model in predicting the onset of churn flow is evaluated.  相似文献   

3.
Two-phase flow is a complex phenomenon present in several industrial applications such as chemical reactors, power generation, and in the exploration, production, and transport of oil and natural gas. The classification of the flow pattern is a fundamental step in such applications, as it influences several derived parameters and sub-processes such as flow rate, void fraction, and pressure drop estimation. In this paper, we propose an objective approach for classifying flow patterns using time series of void fraction (from a wire-mesh sensor), signal processing and machine learning. As novel approach, the time series is modeled as a stochastic process of independent and identically distributed samples with probability density function described by a Gaussian mixture model. The estimated parameters of the mixture are then fed into a Support Vector Machine (SVM), yielding the flow pattern classification. Tests were performed with a vertical liquid–gas flow database from a 52.3-mm-diameter pipe and the results indicate a great potential for application in real systems. The average accuracy and F-score obtained was higher than 0.94 for different test sets, with standard deviation lower than 0.08 for accuracy a lower than 0.11 for F-Score, demonstrating the efficiency and generalization of the proposed method.  相似文献   

4.
The void fraction is one of the key parameters in the measurement of gas/liquid two-phase flow. It can be derived from the absolute conductivity distribution based on Maxwell׳s theory. With Electrical Resistance Tomography (ERT) technology, the absolute conductivity distribution is obtained by multiplying the relative conductivity image with the reference conductivity which is conventionally the liquid conductivity of a gas/liquid flow. Unfortunately the liquid conductivity is not always available. Therefore, a conductivity fitting method is proposed in this paper, to find an optimal reference conductivity, which will be used in substituting the liquid conductivity to reconstruct the quasi-absolute conductivity image. The optimal reference conductivity fitting method is proposed and validated by simulation and experiments under certain flow regimes, e.g. slug flow, annular flow and bubbly flow. The simulation and experimental results show that, independent from prior-knowledge, the fitted quasi-homogenous conductivity is close to the average conductivity of the sensing field. It also leads to a much more accurate estimation of void fraction than the conventional method using liquid conductivity as the reference. With the proposed method, the ERT technique can play a more significant role in the measurement of multiphase flow (MPF).  相似文献   

5.
A specially designed separator for gas-liquid two-phase flow separation and measurement is proposed. The flow characteristics and working scope are studied under different gas/liquid superficial velocities and different flow patterns through FLUENT numerical simulation and experimental research. The working scope of the separator is related to both the gas and liquid superficial velocity. The separator work well under the when the gas superficial velocity ranges from 0.65 to 21 m/s, and the liquid superficial velocity ranges from 0.01 to 0.31 m/s. When the actual working condition is beyond this range, the performance is not so outstanding in case of partial slug flow and annular. Under the working range of the separator, the measurement error of gas and liquid mass flow rates is less than ±2.5%. The special structure provides a buffer space for liquid slug, which shows good shock resistance capacity under high liquid superficial velocity. The investigation offers a valuable guidance for multiphase flow rates measurement.  相似文献   

6.
A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. Partial flow mixing is required by installing the venturi device vertically downstream of a blind tee pipework that conditions the incoming horizontal gas-liquid flow (for an accurate determination of individual phase fraction and flow rate). To study the flow-mixing effect of the blind tee, high-speed video flow visualization of gas-liquid flows has been performed at blind tee and venturi sections by using a purpose-built transparent test rig over a wide range of superficial liquid velocities (0.3–2.4 m/s) and gas volume fractions (10–95%). There is little ‘homogenization’ effect of the blind tee on the incoming intermittent horizontal flow regimes across the tested flow conditions, with the flow remaining intermittent but becoming more axis-symmetric and predictable in the venturi measurement section. A horizontal (blind tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters). Flow patterns can be identified from the mean and variance of a fast electrical capacitance holdup measured at the venturi throat.  相似文献   

7.
This research investigates the effects of flow pattern and salinity of oil-water two-phase flow on water holdup measurement using a conductance method. Firstly, vertical upward oil-water two-phase flow experiment is conducted in a 20 mm inner diameter (ID) pipe, in which the salinities of aqueous solutions are set as 151 ppm, 1003 ppm, 2494 ppm and 4991 ppm respectively. Experimental water-cut and mixture velocity are set as 80–100% and 0.0184–0.2576 m/s. In the experiment, three different flow patterns, i.e., dispersed oil-in-water slug flow (D OS/W), dispersed oil-in-water flow (D O/W) and very fine dispersed oil-in-water flow (VFD O/W) are observed and recorded by a high speed camera. Meanwhile, we collect the response of Vertical Multiple Electrode Array (VMEA) conductance sensor excited by a sine voltage signal. The result shows that, for VFD O/W, the water holdup from VMEA sensor shows a satisfied agreement with that of quick closing valve (QCV) method under certain salinities, i.e., 1003 ppm as well as 2494 ppm. For D OS/W flow and D O/W flow characterized by dispersed oil droplets with various sizes, considerable deviations of water holdup between VMEA sensor and QCV method under four kinds of salinity aforementioned are presented. Afterward, according to experimental analysis along with theoretical deviation, it is concluded that the deviation of the measurement system reaches its minimum when reference resistance in the measurement circuit and salinity of the aqueous solution satisfy constraint conditions, and the accuracy of water holdup using the conductance method can be improved through adjusting reference resistance to match the salinity of water phase. Finally, the recurrence plot algorithm is utilized to identify typical flow patterns mentioned above and it shows satisfied results on comprehending the discrepancies among different flow patterns, demonstrating that the recurrence plot algorithm can be effectively applied in flow pattern identification regarding oil-water flows.  相似文献   

8.
A capacitance void fraction sensor (CVS) is applied to measure the volumetric averaged void fraction in a packed bed of spheres. The void fraction in the packed bed is one of the most important parameters to evaluate cooling characteristics in a porous debris bed during a severe accident of nuclear reactors, and the quantitative void fraction measuring technique for such porous flow channels should be developed. The CVS is a very simple method, and the void fraction is estimated from the electrical capacitance measured between the electrodes installed on the pipe. Generally, the linear relationship or Maxwell equation could be applied to estimate the void fraction from the capacitance measured by the CVS. However, the electrical field in the packed bed becomes complex due to the existence of spheres. Therefore, they may not be applied to the void fraction estimation in the packed bed. In this study, the CVS with a ring-type electrode configuration is used for the sphere-packed beds, and the applicability of the CVS is investigated. At first, the particle size and the pipe diameter are varied in the packed test section, and X-ray transmission imaging is used to clarify the relation between the void fraction and the capacitance in the packed bed. Then, it is found that the void fraction can be obtained by the coefficient in Maxwell's equation, depending on the packed bed properties. Finally, the measurement accuracy of the CVS for the sphere-packed bed is estimated by comparing it with a volumetric method, and the availability of the proposed method is shown.  相似文献   

9.
The alternating appearance of elongated bubbles and liquid slugs of slug flow in the pipe causes severe pressure fluctuation. As a result, measuring the flow rate of the slug flow with the throttling unit based differential pressure method is difficult. This paper investigates a new swirler-based flow measurement method in slug flow. The swirler converts the slug flow into a swirling annular flow, and the differential pressure method is used to measure the flow rate. The influences of gas and liquid flow rates on the differential pressure ΔPX across the swirler as well as its downstream axial differential pressure ΔPZ are investigated. ΔPX0.5 increases linearly as the liquid mass flow rate increases, and the slope of the curve increases as the gas mass flow rate increases. The influence of gas mass flow rate on ΔPX0.5 is comparable to that of liquid mass flow rate on ΔPX0.5. ΔPZ0.5 increases linearly with increasing gas/liquid mass flow rate, and the slope of the curve of ΔPZ0.5 with ml differs slightly from the slope of the curve in single-phase water conditions. Based on the research presented above, new empirical correlations of mass flow rate based on ΔPX and ΔPZ are established respectively. The superficial liquid velocity ranges from 0.6 to 2 m per second, while the superficial gas velocity ranges from 2 to 6 m per second. If the gas mass flow rate and ΔPX are known, the relative error of liquid mass flow is less than 3%. The relative error of the gas mass flow rate is less than 10% if the liquid mass flow rate and ΔPX are given. The calculation accuracy of the flow measurement model using ΔPX is better than the calculation accuracy of the flow measurement model using ΔPZ.  相似文献   

10.
Horizontal oil-water two-phase flow widely exists in petroleum and chemical engineering industry, where the oil and water are usually transported together. As one of most importance process parameters to describe the two-phase flow, the flow pattern can reflect the flow characteristics of inner flow structure and phase distribution. The identification of flow pattern will contribute to develop more accurate measurement model for flow rate or phase fraction and ensure the safety and efficiency of operation in industry. A dual-modality sensor combining with continuous wave ultrasonic Doppler sensor (CWUD) and auxiliary conductance sensor, was proposed to identify flow patterns in horizontal oil-water two-phase flow. In particular, the oil-water flow characteristic was analyzed from Doppler spectrum based on the CWUD sensor. Besides, the dimensionless voltage parameter based on conductance sensor was applied to provide the information of continuous phase in the fluid. Several statistical features were directly extracted without any complicated processing algorithm from Doppler and conductance signals. The extracted features are put into a multi-classification Support Vector Machine (SVM) model to classify five oil-water flow patterns. The results show that the overall identification accuraccy of 94.74% is satisfactory for horizontal oil-water two-phase flow. It also demonstrates that the noninvasive ultrasonic Doppler technique not only can be used for flow velocity measurement but also for flow pattern identification.  相似文献   

11.
Flow regime identification based on local parameters of axial upward two-phase flow in vertical tube bundles, at high-temperature and high-pressure, was performed using optical probes. A staggered arrangement of the tube bundles was simulated inside a non-circular test channel, the tube size and pitch are same as that in a real steam generator of a PWR under design. Optical probes were utilized to acquire the void fraction, interface frequency, and fluctuation characteristics of the local void fraction at two typical locations (centroid of the three tubes, named op-1, and centre of the minimum gap between two tubes, named op-2). The system pressure ranged from 5 to 9 MPa, mass flux from 100 to 350 kg m−2 s−1, thermodynamic steam quality from 0 to 1, and inlet fluid temperature from 263.9 to 303.3 °C, depending on the saturation pressure. This study investigated local parameters and flow pattern characteristics of high-pressure steam-water two-phase flow in vertical tube bundles using optical probes, with the measurement error of less than 2%. Results showed that local void fraction at op-1 was much larger than that at op-2, and the local void fraction difference between op-1 and op-2 increased first and then gradually decreased, which was primarily affected by the transition in flow regimes. The flow pattern characteristics of steam-water two-phase flow were described based on three aspects, namely, variation in interface frequency with local void fraction, fluctuation characteristics of local void fraction, and statistical analysis of local void fraction deviating from the average. Additionally, the flow regime identification criteria, applicable to the steam-water two-phase flow in vertical tube bundles, were proposed based on local parameters.  相似文献   

12.
截面含气率作为气液两相流动过程中的基本参数之一,对石油管道的开采、输运,核反应堆冷却塔的设计等过程具有重要意义。本文提出了基于激光诱导成像技术和高速摄录系统的截面含气率直接检测方法,有效的避免管道曲率和介质折射率导致的光学畸变。在河北大学多相流循环装置进行实验,测量了18个流量点,液相流量测量范围10~35 L/min,气相流量测量范围2.0~3.0 L/min。运用计量比对的思想,对两种检测技术获得的截面含气率值求取偏差并进行修正,最大偏差仅为0.014 59。结果表明两种方法得到的截面含气率值具有较好的一致性,证明本文提出的荧光成像技术对气液两相分层流截面含气率的检测是有效的。  相似文献   

13.
Metering on gas-liquid two-phase flow is challenging even though the Coriolis Mass Flowmeters (CMFs) outperform most of other flow measurement technologies owing to their ability to directly measure the fluid mass flowrates. This is due to complexity of the dynamics of the gas-liquid two-phase flow. Thus, Coriolis Mass Flowmeters have been undergoing modifications to improve their accuracy on measuring complex flows but still the variation of error due to bubble entrainment and the mechanisms responsible of these errors remain less understood. Hence there is a strong need to conduct further characterization on the performance of CMFs on measurement on gas-liquid two-phase flow.This study aims to analyse the performance of a U-shape CMF on metering gas-liquid two-phase flow via both CFD simulation and experimental measurements. For simulation, a two-way coupling of Fluid-Structure Interaction was used to minimize the inaccuracy in simulation results. It has the ability to count on influences of fluid forces on the tube deformation and the reaction of the oscillating-fluid conveying tube to the overall dynamics of the system.The results show that at low nominal flowrates (NFRs), the flow/phases separation occurs and dominates the previously identified factors of errors such as bubble theory effect/friction damping effect and cause positive errors. The error associated with bubble theory effect or friction damping is negative i.e. the CMFs under-estimate the mass flowrates of the mixture. Our study, however, found negative errors only at high nominal mass flowrates. In addition, it is to be noted also that even though the theoretically predicted error due to mixture compressibility in some literatures could be positive, it is important to carry out further experimental and computational studies for analysis. In this study, it is observed that the oscillations of separated fluid phases amplify the amplitude of tube oscillation and hence leading to distortion of the displacements of the CMF tube. This could lead to up to 14.9% of positive error in CMFs’ measurements at the low nominal mass flowrates.It is believed that these results can serve as baselines for future studies on corrections and compensations of CMFs’ errors on measurement on gas entraining fluid flow encountered in fuel bunkering and LNG metering processes.  相似文献   

14.
光纤持气率计在气/水两相流中响应规律的实验研究   总被引:3,自引:3,他引:0  
为考察现有光纤持气率计对气液两相流的响应特性,采用多相流标定装置对其进行测定,系统研究光纤持气率计在不同气/水配比条件下的响应规律。实验结果表明,光纤持气率探针在静水条件下以及在气/水总量为80m3/d的不同气/水配比情况下,持气率对气含量的响应均基本呈线性变化规律;当气/水总量低于45m3/d时,持气率对含水量响应不呈线性规律。  相似文献   

15.
Cavitating venturis (CVs) are simple devices which can be used in different industrial applications to passively control the flow rate of fluids. In this research the operation of small-sized CVs is characterized and their capabilities in regulating the mass flow rate were experimentally and numerically investigated. The effect of upstream and downstream pressures, as well as geometrical parameters such as the throat diameter, throat length, and diffuser angle on the mass flow rate and critical pressure ratio were studied. For experimental data acquisition, three CVs with throat diameters of 0.7, 1 and 1.5 mm were manufactured and tested. The fabricated CVs were tested at different upstream and downstream pressures in order to measure their output mass flow rate and to obtain their characteristic curves. The flow inside the CVs was also simulated by computational fluid dynamics. The numerical results showed agreement with the experimental data by a maximum deviation of 5–10% and confirmed that the numerical approach can be used to predict the critical pressure ratio and mass flow rate at cavitaing condition. It is found that despite the small size of venturis, they are capable of controlling the mass flow rate and exhibit the normal characteristics. By decreasing the throat diameter, their cavitating mode became more limited. Results also show that increasing the diffuser angle and throat length leads to a decrease in critical pressure ratio.  相似文献   

16.
In the gas/solid two-phase system, solid particles can accumulate a large number of electrostatic charges because of collision, friction and separation between particles or between particles and the wall. Through the detection and processing of the induced fluctuation charge signal, a measuring system can obtain two-phase flow parameters, such as flow regime, concentration and velocity. A novel methodology via introducing the characteristics of speech emotion recognition into flow regime identification is proposed for improving the recognition rate in gas/solid two-phase flow systems. Three characteristics of electrostatic fluctuation signals detected from an electrostatic sensor are extracted as the input of back propagation (BP) neural networks for flow regime identification. They are short-term average energy, Mel-frequency cepstral coefficients (MFCC) and cepstrum. The results show that the method based on each characteristic of the electrostatic fluctuation signal and BP neural networks can identify the three flow regimes of gas/solid two-phase flow in a horizontal pipe, and the identification rate of the method based on the three characteristics and BP neural networks is up to 97%, much higher than the methods based on a single characteristic.  相似文献   

17.
Aerodynamic effects due to hot-wire anemometer (HWA) probe directly influence heat transfer from the probe sensor and result in reduced accuracy in two-dimensional measurements. This experimental research investigates the aerodynamic effects for hot-wire sensors through the study of some important factors such as probe geometry, flow scheme (velocity and direction) and orientation of the probe relative to the flow direction. In addition, flow velocity field between the prongs of a 10:1 model of a single normal probe is explored at different velocities and yaw angles, both at vertical and horizontal orientations of the probe. Results indicate that in vertical orientation, heat transfer from the sensors is always higher than horizontal orientation. Moreover, the aerodynamic effects cause a velocity increase of up to 6% in the vicinity of the sensor. In addition, the presence of the sensor in the flow, generates low-velocity field in the flow wake and a minor rotation of the flow in the vicinity of the sensor, which result in reduced heat transfer from the sensor in horizontal orientation compared to the vertical orientation.  相似文献   

18.
基于尺度分离理论,近壁微液膜波动特性对临界热负荷的产生有至关重要的影响。针对水平管内分层流动近壁微液膜在气流剪切应力作用下的波动特性进行研究,分析声学法,射线法,电学法和光学法等不同检测方法在近壁薄液膜厚度测量上的应用,并比较各种方法的优缺点。最终采用光学法,即利用光谱共焦位移传感器,对不同气、液流速条件下近壁微液膜进行测量,分析剪切夹带对液膜厚度变化的影响规律,获得液膜撕裂的临界条件。研究结果表明:微液膜平均厚度在气流剪切夹带影响下随气速的增大而减小。由于液滴夹带现象影响程度的不同,在不同气、液流速条件下,试验段出口处液膜平均厚度液膜呈现线性或非线性的变化趋势。气流剪切应力增大时,液膜厚度超过临界厚度即发生撕裂现象,液膜撕裂存在随机性,当壁面条件一定时,临界液膜厚度不随气、液流速的变化而变化,但在高气、液流速条件下液膜波动加剧。  相似文献   

19.
Measurement of instantaneous air flow velocity with high frequency can be carried out by using a hot wire anemometer (HWA). HWA works on the basis of heat transfer rate from hot wire to the fluid flow, therefore directional identification of the air flow using hot wire anemometer is a difficult task. By using two parallel cylindrical hot film sensors a probe was built. By considering the wake and heat effect of the upstream sensor on the downstream sensor, direction of the air flow can be identified. In this work, the wake and heat effect resulting from the upstream sensor to the velocity measurement, by the downstream sensor was studied. This measured velocity is dependent of the following factors namely; air velocity, upstream sensor overheat ratio, distance between the two sensors and turbulence intensity of the flow. As a result it was found that the manufactured probe with sensor distance of 1 mm apart is capable of measuring reverse flow measurements of up to 20 m/s for a moderate turbulent flow.  相似文献   

20.
This paper looks at the effect of the lubricant on emissions of paniculate matter. A short literature review is presented, together with experimental results for an engine operating with a synthetic lubricant and a defined fuel. The influence of engine operating parameters such as engine load and speed on particulate matter (PM) emissions is discussed, based on measurement of the composition of the aliphatic fraction of the soluble organic fraction (SOF) of the PM. Based on the results from the experiments, which include some comparative data for a mineral-based lubricant, it is concluded that the method that is generally used to estimate fuel and lubricant contribution to the SOF of the PM has to be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号